• Title/Summary/Keyword: band gap engineering

Search Result 731, Processing Time 0.028 seconds

Development of high performance near-ultraviolet OLEDs based on the Double Wide Band Gap Emissive Layers

  • Kim, Young-Min;Park, Young-Wook;Choi, Jin-Hwan;Kim, Jai-kyeong;Ju, Byeong-Kwon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.977-979
    • /
    • 2006
  • Organic light-emitting diodes (OLEDs) based on the double wide band gap emissive layers in the range of 380 nm to 440 nm are reported. An efficient electroluminescence with a maximum at 400nm was observed at room temperature under a forward bias about 10V. With the wide band gap organic materials for near-ultraviolet emission, the low operating voltage (5V) and high current efficiency (3 cd/A) have been obtained at $2mA/cm^2$

  • PDF

Characteristics of Diamondike Carbon thin Films by Low Discharging Frequency(450KHz) PECVD (저주파수(450 KHz) PECVD에 의한 Diamondlike Carbon박막의 특성)

  • Kim, Han-Ju;Ju, Seung-Gi
    • Korean Journal of Materials Research
    • /
    • v.4 no.2
    • /
    • pp.227-232
    • /
    • 1994
  • Diamondlike carbon thin film has been fabricated with low discharging frequency, 450KHz by plasma enhanced chemical vapor deposition. Its physical properties such as optical band gap, microhardness and internal stress have been compared with 13.56MHz film. Optical band gap of 450KHz DLC thin film was less than 13.56MHz film and it was found that C-H bond concentration and total hydrogen contents in the film decreased greatly as the result of FT-IR and CHN analysis. Also, when DLC thin film was fabricated with low discharging frequency, it was expected that the adhesion of the film to the substrate was improved by the great decrease of internal stress without any considerable decrease of microhardness.

  • PDF

Temperature dependence of photocurrent spectra for $AgInS_2$ epilayers grown by hot wall epitaxy

  • Baek, Seung-Nam;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.123-124
    • /
    • 2007
  • A silver indium sulfide ($AgInS_2$) epilayer was grown by the hot wall epitaxy method, which has not been reported in the liteniture. The grown $AgInS_2$ epilayer has found to be a chalcopyrite structure and evaluated to be high quality crystal. From the photocurrent measurement in the temperature range from 30 K to 300 K, the two peaks of A and B were only observed, whereas the three peaks of A, B, and C were seen in the PC spectrum of 10 K. These peaks are ascribed to the band-to-band transition. The valence band splitting of $AgInS_2$ was investigated by means of the photocurrent measurement. The temperature dependence of the energy band gap of the $AgInS_2$ obtained from the photocurrent spectrum was well described by the Varshni's relation, $E_g(T)=\;E_g(0)\;eV-(7.78\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;116\;K\;K)$. Also, Eg(0) is the energy band gap at 0 K, which is estimated to be 2.036 eV at the valence band state A and 2.186 eV at the valence band state B.

  • PDF

Design of Meander Chip Antenna with Gap Stub for Dual-Band(GPS/K-PCS) Operation (갭 스터브가 삽입된 이중 대역(GPS, K-PCS) 미엔더 칩 안테나 설계)

  • Kim Young-Do;Sin Kyung-Sup;Won Chung-ho;Lee Hong-Min
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.217-220
    • /
    • 2004
  • This paper presents design simulation, implementation, and measurement of a miniaturized GPS/K-PCS dual-band LTCC chip antenna for mobile communication handsets. The dimension of LTCC chip antenna is $9mm{\times}15mm{\times}1.2mm$. The lower meander type antenna is to be tuned to the lower frequency (GPS) band and the upper meander antenna with via hole connection is to contribute the higher frequency (K-PCS) band. In order to lowering the resonant frequency for GPS band, two printed modified meander antenna with gap stub is used to integrate with PCS band operation. The measured resonant frequency at GPS band shifts to lower frequency about 100MHz. The measured impedance bandwidth(VSWR $\leq$ 2) are 55MHz and 120MHz at the resonant frequency. respectively.

  • PDF

The Growth Characteristics of ${\beta}\;-FeSi_2$ as IR-sensor Device for Detecting Pollution Material : The Usage of the Ferrocene-Plasma

  • Kim, Kyung-Soo;Jung, II-Hyun
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.102-111
    • /
    • 2000
  • As IR-sensor for detecting pollution material, the iron silicide has a fit band gap, high physicochemical stability at high temperature and good acid resistance. The growing film was formed with the Fe-Si bond and the organic compound because plasma resolved the injected precursors into various active species. In the Raman scattering spectrum, the Fe-Si vibration mode showed at 250 {TEX}$cm^{-1}${/TEX}. The FT-IR peak indicated that the various organic compounds were deposited on the films. The iron silicide was epitaxially grown to β-phase by the high energy of plasma. The lattice structure of films had [220]/[202] and [115]. The thickness of the films increased with the flow rate of silane. But rf-power increased with decreasing the thickness. The optical gap energy and the band gap were shown about 3.8 eV and 1.182∼1.194 eV. The band gap linearly increased and the formula was below: {TEX}$E_g^{dir}${/TEX}= 8.611×{TEX}$10^{-3}N_{D}${/TEX}+1.1775

  • PDF

Fabrication of M-Doped TiO2 (M=Co, Cr, Fe) : Its Electronic Band Structure-(1) (M-Doped TiO2 (M=Co, Cr, Fe)의 제조 : 전자 밴드구조-(1))

  • Bae, Sang-Won;Kim, Hyun-Gyu;Ji, Sang-Min;Jang, Jum-Suk;Jeong, Euh-Duck;Hong, Suk-Joon;Lee, Jae-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.22-27
    • /
    • 2006
  • The electronic band structures of Metal-doped titanium dioxide, M-doped $TiO_2$ (M=Co, Cr, Fe), have been studied by using XRD, UV-vis diffuse reflectance spectrometer and FP-LAPW (Full-Potential Linearized Augmented-Plane-Wave) method. The UV-vis of M-doped $TiO_2$ (M=Co, Cr, Fe) showed two absorption edges; the main edge due to the titanium dioxide at 387 nm and a shoulder due to the doped metals at around 560 nm. The band gap energies of Co, Cr and Fe-doped $TiO_2$ calculated by FP-LAPW method were 2.6, 2.0, and 2.5 eV, respectively. The theoretically calculated band gap energy of $TiO_2$ by using FP-LAPW method was the same as experimental results. FP-LAPW method will be useful for fabrication and development of photo catalysts working under visible light.

The Physicochemical and Optical Characteristics of FeaSibCcHd Films (FeaSibCcHd 박막의 물리·화학 및 광학적 특성)

  • Kim, Kyung-soo;Jean, Bup-Ju;Jung, Il-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.105-111
    • /
    • 1999
  • When the preparation method of iron silicide films possess the annealing process, the interfacial state of the films is not fine. The good quality films were obtained as the plasma was used without annealing processing. Since the injected precursors were various active species in the plasma state, the organic compound was contained in the prepared films. We confirmed the formation of Fe-Si bonds as well as the organic compound by Fe and Si vibration mode in Raman scattering spectrum at $250cm^{-1}$ and Ft-IR. Because of epitaxy growth being progressed by the high energy of plasma at the low temperature of substrate, iron silicide was epitaxially grown to ${\beta}$-phase that had lattice structure such as [220]/[202] and [115]. Band gap of the prepared films had value of 1.182~1.174 eV and optical gap energy was shown value of 3.4~3.7 eV. The Urbach tail and the sub-band-gap absorptions were appeared by organic compound in films. We knew that the prepared films by plasma were obtained a good quality films because of being grown single crystal.

  • PDF

Applications of a Chirping and Tapering Technique on Photonic Band-Gap(PBG) Structures for Bandwidth Improvement

  • Tong Ming-Sze;Kim Hyeong-Seok;Chang Tae-Gyu
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.43-47
    • /
    • 2005
  • Microwave or optical photonic band-gap(PBG) structures are conventionally realized by cascading distributive elements in a periodic pattern. However, the frequency bandwidth obtained through such plainly periodic arrangement is typically narrow, corporate with a relatively high rejection side-lobe band. To alleviate such problems, a design involving a chirping and tapering technique is hence introduced and employed. The design has been applied in both a planar stratified dielectric medium as well as a strip-line transmission line structure, and results are validated when compared with the corresponding conventional PBG structure.

A Study on the Band Characteristics of ZnSe Thin Film with Zinc-blende Structure (Zinc Blende 구조를 가지는 ZnSe 결정의 밴드 특성에 관한 연구)

  • Park, Jeong-Min;Kim, Hwan-Dong;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • ZnSe, as a II-VI compound semiconductor which has a wide band gap in the visible region is applicable to the various fields such as laser diode, display and solar cell. By using the electrochemical deposition method, ZnSe thin film was synthesized on the ITO glass substrate. The synthesis of ZnSe grains and their structure having zinc blende shape were verified through the analysis of XRD and SEM. UV spectrophotometric method determined the band gap as the value of 2.76 eV. Applying the DFT (Density Functional Theory) in the molecular dynamics, the band structure of ZnSe grains was analyzed. For ZnSe grains with zinc blende structure, the band structure and its density of state were simulated using LDA (Local Density Approximation), PBE (Perdew Burke Ernzerhof), and B3LYP (Becke, 3-parameter, Lee-Yang-Parr) functionals. Among the calculations of energy band gap upon each functional, the simulated one of 2.65 eV based on the B3LYP functional was mostly near by the experimental measurement.

Isogeometric Optimal Design of Kelvin Lattice Structures for Extremal Band Gaps (극대화된 밴드갭을 갖는 켈빈 격자 구조의 아이소-지오메트릭 최적 설계)

  • Choi, Myung-Jin;Oh, Myung-Hoon;Cho, Seonho;Koo, Bonyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.241-247
    • /
    • 2019
  • A band gap refers to a certain frequency range where the propagation of mechanical waves is prohibited. This work focuses on engineering three-dimensional Kelvin lattices having external band gaps at low audible frequency ranges using a gradient-based design optimization method. Elastic wave propagation in an infinite periodic lattice is investigated by employing the Bloch theorem. We model the ligaments using a shear-deformable beam model obtained by consistent linearization in a geometrically exact beam theory. For a given lattice topology, we enlarge band gap sizes by controlling the configuration of the beam neutral axis and cross-section thickness that are smoothly parameterized by B-spline basis functions within the isogeometric analysis framework.