• Title/Summary/Keyword: bamboo active carbon

Search Result 4, Processing Time 0.017 seconds

Effect of Natural Porous Materials on Storability of LDPE Packaged Sweet Persimmon 'Fuyu' (다공성 천연 소재가 '부유' 단감의 저장성에 미치는 영향)

  • Kim, Yong-Hun;Park, Jee-Sung;Kim, Kun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.79-84
    • /
    • 2015
  • This study was carried out in order to develop an economical and convenient way to improve storability of sweet persimmon 'Fuyu'. Natural porous materials (bamboo active carbon, chaff charcoal, and Ge-lite) pouching bags were enveloped in the conventional LDPE (low density polyethylene) package during room temperature and low temperature storage. The changes of soluble solids content, flesh firmness, flavor, decay, and softening of sweet persimmon were investigated in the 1- or 2-week intervals. The LDPE packaging with bamboo active carbon treatment was confirmed to maintain longer storability and higher quality than the LDPE packaging only. This method is expected to be applied to both of conventional and organic farming as an economical and convenient way to improve storability on long term storage and during distribution.

Preparation and Characterization of Bamboo-based Activated Carbon by Phosphoric Acid and Steam Activation (인산 및 수증기 활성화에 의한 대나무 활성탄 제조 및 특성 연구)

  • Park, Jeong-Woo;Ly, Hoang Vu;Oh, Changho;Kim, Seung-Soo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • Bamboo is an evergreen perennial plant, and it is known as one of the most productive and fastest-growing plants in the world. It grows quickly in moderate climates with only moderate water and fertilizer. Traditionally in Asia, bamboo is used for building materials, as a food source, and as versatile raw materials. Bamboo as a biomass feedstock can be transformed to prepare activated carbon using the thermal treatment of pyrolysis. The effect of process variables such as carbonization temperature, activation temperature, activation time, the amount of steam, and the mixing ratio of phosphoric acid and bamboo were systematically investigated to optimize the preparation conditions. Steam activation was proceeded after carbonization with a vapor flow rate of $0.8{\sim}1.8mL-H_2O\;g-char^{-1}\;h^{-1}$ and activation time of 1 ~ 3 h at $700{\sim}900^{\circ}C$. Carbon yield and surface area reached 2.04 ~ 20.59 wt% and $499.17{\sim}1074.04m^2\;g^{-1}$, respectively, with a steam flow rate of $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$ for 2 h. Also, the carbon yield and surface area were 24.67 wt% and $1389.59m^2\;g^{-1}$, respectively, when the bamboo and phosphoric acid were mixed in a 1:1 weight ratio ($700^{\circ}C$, 2 h, $1.4mL-H_2O\;g-char^{-1}\;h^{-1}$). The adsorption of methylene blue into the bamboo activated carbon was studied based on pseudo first order and second order kinetics models. The adsorption kinetics were found to follow the pseudo second order model, which is governed by chemisorption.

Pyrocarbon Whisker Growth on the Catalytic Mullite Substrate by the Pyrolysis of Methane

  • Rhee, Bosung;Park, Young-Tae
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.101-105
    • /
    • 2005
  • Like bamboo-sprouts after rains, numerous sub${\mu}m$-sized pyrocarbon whiskers growth on the Mullite ($3Al_2O_3{\cdot}2H_2O$) substrate could be observed through a looking glass during methane pyrolysis at the temperature of $1050^{\circ}C$ in this study. If the surface of substrate would be scrubbed strongly with iron metals, then finely sticked iron particles were more effective catalytic for nm-sized whisker growth. Numerous fine flakes of pyrolytic carbon were hanging by invisible nm-whiskers as like as small spiders hanging by a spiderweb. This is the identification of nm-sized whisker growth. Therefore if the pyrolysis would be stopped at the initial stage of the whisker growth, the primary lengthening growth was nm-sized whisker. So could we vary arbitrarily sizes of whisker from nm- to ${\mu}m$-sizes. But ${\mu}m$- and nm-whiskers grown with the different growth mechanism; the former was straight and the latter has twigs, The lengthening growth of whisker was depended on the flow pattern pyrolysis species on the active sites of substrate and on the growth duration. We could obtained straight whisker length of 10~20 ${\mu}m$/min during the primary growth and laboratory spiral whisker of 30~40 ${\mu}m$-diameter/hr during the secondary growth.

  • PDF

Synthesis of TiO2/active carbon composites via hydrothermal process and their photocatalytic performance (수열합성법에 의한 TiO2/active carbon 복합체의 제조 및 광촉매특성)

  • Kim, Dong Jin;Lee, Jin Hee;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.241-245
    • /
    • 2013
  • Granular bamboo-derived active carbons (AC) were impregnated (or coated) with $TiO_2$ nano crystalline powders. The photocatalytic activity of the $TiO_2$-impregnated active carbons ($TiO_2$/AC) were determined on the basis of the degradation rate of methylene-blue aqueous solution under UV irradiation. The active compounds of $TiO_2$ were impregnated onto the AC under moderate hydrothermal conditions (${\leq}200^{\circ}C$, pH 11). The mean size of $TiO_2$ particles calculated from BET surface area were found to be as 50 nm. The $TiO_2$ precipitates were coated on the cavities or pores on the surfaces of highly activated carbons. Since the hydrothermal process led to a lowering of the on-set temperature of the anatase-to-rutile transition of $TiO_2$ as low as $200^{\circ}C$, $TiO_2$ crystallites of a pure anatase or a mixed form with rutile were successfully coated on the AC depending on the synthesis temperatures.