• Title/Summary/Keyword: ballistic analysis

Search Result 147, Processing Time 0.022 seconds

Analysis of Human Body Injury by Non-penetrating Ballistic Impact Using a Finite Element Model of the Head and Neck (근육 모델이 고려된 두부 및 경추 유한요소모델을 이용한 비관통 피탄 충격에 의한 인체 상해 해석)

  • Kang, Moon Jeong;Jo, Young Nam;Chae, Jeawook;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Ballistic impact on a soldier wearing a helmet can induce fatal injury, even if the helmet is not penetrated. Although studies on this type of injury have been performed, most of them have used an analytical model focused on head injury only. The injury of the neck muscles and cervical vertebrae by non-penetrating ballistic impact affects the survivability of soldiers, despite not inflicting fatal injury to the human body. Therefore, an analytical model of the head and neck muscles are necessary. In this study, an analysis of human body injury using the previously developed head model, as well as a cervical model with muscles, was performed. For the quantitative prediction of injury, the stress, strain, and HIC were compared. The results from the model including the cervical system indicated a lower extent of injury than the results from the model excluding them. The results of head injury were compared with other references for reliability.

Accuracy of Fire of a Mortar via Multibody Dynamics Analysis (다물체 동역학 해석을 통한 포의 사격정확도 분석)

  • Jin, Jae Hoon;Jung, Samuel;Kim, Tae Yoon;Kim, Young Ku;Ahn, Chang Gi;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.229-236
    • /
    • 2016
  • For this research, the trajectory of a projectile was simulated via the multibody dynamics analysis of a self-propelled mortar. The dynamic model was composed of a mortar model and a vehicle model, and was simulated using the RecurDyn program. Interior ballistic was applied to the mortar model, and exterior ballistic was conducted by Matlab using the simulation results of the interior trajectory. Through repetitive Monte-Carlo simulations, the accuracy of the mortar was analyzed by considering variations in the aiming angle and vehicle dynamic response.

Analysis of the Optimal Frequency Band for a Ballistic Missile Defense Radar System

  • Nguyen, Dang-An;Cho, Byoungho;Seo, Chulhun;Park, Jeongho;Lee, Dong-Hui
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.231-241
    • /
    • 2018
  • In this paper, we consider the anti-attack procedure of a ballistic missile defense system (BMDS) at different operating frequencies at its phased-array radar station. The interception performance is measured in terms of lateral divert (LD), which denotes the minimum acceleration amount available in an interceptor to compensate for prediction error for a successful intercept. Dependence of the frequency on estimation accuracy that leads directly to prediction error is taken into account, in terms of angular measurement noises. The estimation extraction is performed by means of an extended Kalman filter (EKF), considering two typical re-entry trajectories of a non-maneuvering ballistic missile (BM). The simulation results show better performance at higher frequency for both tracking and intercepting aspects.

A ballistic lead-computation method to improve firing accuracy of army combat vehicles (전투차량의 사격통제 성능향상을 위한 탄도해 리드 계산 기법)

  • Jeoun, Young-Mi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.31-37
    • /
    • 2007
  • This paper presents a ballistic lead-computation method which utilizes automatic video tracking, tracking assistance and roll uncoupling. The method is able to improve the firing accuracy of army fighting vehicles such as main battle tanks. In the experiment, the efficiency of the proposed method is evaluated by an error analysis in real operating environment. The proposed method has been applied to the fire control system of a military vehicle and proved through the development test of the vehicle.

Analysis of Nano-Scale Heat Conduction in the Quantum Dot Superlattice by Ballistic Diffusive Approximation (Ballistic Diffusive Approximation에 의한 Quantum Dot Superlattice의 나노열전달 해석)

  • Kim, Won-Kap;Chung, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1376-1381
    • /
    • 2004
  • Understanding the thermal conductivity and heat transfer processes in superlattice structures is critical for the development of thermoelectric materials and optoelectronic devices based on quantum structures. $Chen^{(1)}$ developed ballistic diffusive equation(BDE) for alternatives of the Boltzmann equation that can be applied to the complex geometrical situation. In this study, a simulation code based on BDE is developed and applied to the 1-dimensional transient heat conduction across a thin film and transient 2-dimensional heat conduction across the film with heater. The obtained results are compared to the results of the $Chen^{(1)}$ and Yang and $Chen^{(1)}$. Finally, steady 2-dimensional heat conduction in the quantum dot superlattice are solved to obtain the equivalent thermal conductivity of the lattice and also compared with the experimental data from $Borca-Tasciuc^{(2)}$.

  • PDF

A Mission Planning System for Multiple Ballistic Missiles

  • Kim, Jingyu;Song, Chikwon
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.815-821
    • /
    • 2019
  • This paper presents the design and implementation of a Mission Planning System(MPS) for multiple ballistic missiles. MPSs are also a kind of M&S systems in defense domain, and these provide important computations on the ground before flights of flying objects. The proposed MPS in this paper has a new concept which is far from generating a set of waypoints of a flying object and proving the set. In this paper, we firstly discuss the research motivation of our own MPS; then, we introduce the design of our MPS and its functionalities. In order to prove the practicality of our MPS, we have conducted a case study.

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K.;Mukhopadhyay, T.;Roy, L.;Dey, S.
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.529-547
    • /
    • 2022
  • Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

Ballistic impact analyses of triangular corrugated plates filled with foam core

  • Panigrahi, S.K.;Das, Kallola
    • Advances in Computational Design
    • /
    • v.1 no.2
    • /
    • pp.139-154
    • /
    • 2016
  • The usage of sandwich structure is extensively increasing in lightweight protective structures due to its low density and other useful properties. Sandwich panels made of metal sheets with unfilled cellular cores are found to exhibit lower deflections by comparing to an equivalent monolithic plate of same metal and similar mass per unit density. However, the process of localized impact on solid structures involving plastic deformation, high strain rates, temperature effect, material erosion, etc. does not hold effectively as that of monolithic plate. In present work, the applications of the sandwich plate with corrugated core have been extended to develop optimized lightweight armour using foam as medium of its core by explicit finite element analysis (FEA). The mechanisms of hardened steel projectile penetration of aluminum corrugated sandwich panels filled with foams have been numerically investigated by finite element analysis (FEA). A comparative study is done for the triangular corrugated sandwich plate filled with polymeric foam and metallic foam with different densities in order to achieve the optimum penetration resistance to ballistic impact. Corrugated sandwich plates filled with metallic foams are found to be superior when compared to the polymeric one. The optimized results are then compared with that of equivalent solid and unfilled cores structure to observe the effectiveness of foam-filled corrugated sandwich plate which provides an effective resistance to ballistic response. The novel structure can be the alternative to solid aluminum plate in the applications of light weight protection system.

Safety assessment of an underground tunnel subjected to missile impact using numerical simulations

  • Thai, Duc-Kien;Nguyen, Duy-Liem;Pham, Thanh-Tung;Pham, Thai-Hoan
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • This work presents a safety assessment of an underground tunnel subjected to a ballistic missile attack employing the numerical approach. For the impact simulation, a box shaped reinforced concrete (RC) structure with a cross section dimension of 8.0×10.0 m under a soil layer that was attacked by a SCUD missile was modeled using finite element (FE) software LS-DYNA. SCUD missile is one of a series of tactical ballistic missiles developed by Soviet Union during the Cold War, which is adopted for a short-range ballistic missile. The developed FE simulation for the penetration depth of the missile impacting into the soil structure was verified from the well-known formula of the penetration prediction. The soil-structure interaction, the soil type, and the impact missile velocity effects on the penetration depth of the missile into the different soil types were investigated. The safety assessment of the underground tunnel was performed with regard to the different depths of the underground tunnel. For each missile velocity and soil type, a specific depth called the unsafe depth was obtained from the analysis results. The structure beneath the soil beyond this depth remains safe. The unsafe depth was found to be increased with the increasing missile velocity.

A Study of Multi-to-Majority Response on Threat Assessment and Weapon Assignment Algorithm: by Adjusting Ballistic Missiles and Long-Range Artillery Threat (다대다 대응 위협평가 및 무기할당 알고리즘 연구: 탄도미사일 및 장사정포 위협을 중심으로)

  • Im, Jun Sung;Yoo, Byeong Chun;Kim, Ju Hyun;Choi, Bong Wan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • In weapon assignment studies to defend against threats such as ballistic missiles and long range artillery, threat assessment was partially lacking in analysis of various threat attributes, and considering the threat characteristics of warheads, which are difficult to judge in the early flight stages, it is very important to apply more reliable optimal solutions than approximate solution using LP model, Meta heuristics Genetic Algorithm, Tabu search and Particle swarm optimization etc. Our studies suggest Generic Rule based threat evaluation and weapon assignment algorithm in the basis of various attributes of threats. First job of studies analyzes information on Various attributes such as the type of target, Flight trajectory and flight time, range and intercept altitude of the intercept system, etc. Second job of studies propose Rule based threat evaluation and weapon assignment algorithm were applied to obtain a more reliable solution by reflection the importance of the interception system. It analyzes ballistic missiles and long-range artillery was assigned to multiple intercept system by real time threat assessment reflecting various threat information. The results of this study are provided reliable solution for Weapon Assignment problem as well as considered to be applicable to establishing a missile and long range artillery defense system.