• Title/Summary/Keyword: ballistic analysis

Search Result 147, Processing Time 0.025 seconds

Collision Analysis of STF Impregnated Kevlar Fabric Using the 3D-Shell Element (쉘요소를 활용한 STF 함침된 Kevlar Fabric의 방탄해석)

  • Lee, Duk-Gyu;Park, Jong-Kyu;Jung, Wui-Kyung;Lee, Man-Young;Kim, See-Jo;Moon, Sang-Ho;Son, Kwon-Joong;Cho, Hee-Keun
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.24-32
    • /
    • 2016
  • Ballistic impact analyses have been performed with the Kevlar fabric impregnated with STF(shear thickening fluid). Multi-layer laminates modeled with 3D isoparametric shell elements were used for the performance analysis and their results are compared with experimental results. Both experiments and numerical analyses have been done to verify the usefulness of STF to enhance the impact resistance performance. The results showed that STF increases friction within a bundle of fiber, and this phenomena is more apparent in the velocity range of under near 450 m/s. In this research, it is emphasized that FEA analyses of STF impregnated Kevlar fabric laminate were successfully conducted using shell elements. Moreover, the effectiveness of the technique and accuracy were verified through the comparison with reliable experimental data.

Analysis of Hypervelocity Impact Fracture Behavior of Multiple Bumper Steel Plates (다층 강재 방호판의 초고속 충격 파괴거동해석)

  • Jo, Jong Hyun;Lee, Young Shin;Kim, Jae Hoon;Bae, Yong Woon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.761-768
    • /
    • 2013
  • New warheads are designed and developed to be highly lethal when used as part of ballistic missile payloads. There are many trades associated with the design of a central warhead core, mainly dealing with the projectiles or penetrators. Obviously, a payload-type configuration is very susceptible to kills from one projectile because of the high impacts required for bomblet or submunition payloads. Based on these requirements, the optimum kill vehicle configuration will have the smallest mass and relative velocity that will kill all the submunitions. The designs of the penetrator shape and size are directly related to the space and weight of the warhead. The shape, size, L/D, penetrator material, and manner in which they are inserted inside the surrounding explosive segments are critical in achieving successful penetrator design. The AUTODYN-3D code was used to study the effect of penetrator penetration. The objective of numerical analysis was to determine the penetration characteristics of the penetrator produced by hypervelocity impacts under different initial conditions such as initial velocity, shape, and L/D of the penetrator.

The Analysis of the U.S. Navy Surface Forces Strategy and the implications to Republic of Korea Navy (미(美) 해군 수상함부대 전략 평가 및 한국 해군에게 주는 시사점)

  • Kim, Hyun-Seung
    • Strategy21
    • /
    • s.41
    • /
    • pp.52-84
    • /
    • 2017
  • After finishing Cold War, the U.S. Navy's ability to Sea control has been gradually eroded last 15-20 years. The global security environment demands that the surface Navy rededicate itself to sea control, as a new group of potential adversaries is working to deny U.S. navy command of the sea. China has been increasing their sea denial capability, such as extended anti-surface cruise missile and anti-surface ballistic missile. To cope with this situation, the U.S. Naval Surface Forces Command has announced Surface Forces Strategy: Return to Sea Control. It is a new operating and organizing concept for the U.S. surface fleet called 'distributed lethality'. Under distributed lethality, offensive weapons such as new ASCMs are to be distributed more widely across all types of Navy surface ships, and new operational concept for Navy surface fleet's capability for attacking enemy ships and make it less possible for an enemy to cripple the U.S. fleet by concentrating its attack on a few very high-value Navy surface ships. By increasing the lethality of the surface ships and distributing them across wide areas, the Navy forces potential adversaries to not only consider the threat from our carrier-based aircraft and submarines, but they now consider the threat form all of those surface ships. This idea of using the distributed lethality template to generate surface action groups and adaptive force package and to start thinking about to increase the lethal efficacy of these ships. The U.S. Navy believes distributed lethality increases the Navy's sea control capability and expands U.S. conventional deterrence. Funding new weapons and renovated operating concept to field a more lethal and distributed force will enable us to establish sea control, even in contested area. The U.S. Navy's Surface Forces Strategy provides some useful implications for The ROK Navy. First the ROK Navy need to reconsider sea control mission. securing sea control and exploiting sea control are in a close connection. However, recently the ROK Navy only focuses on exploiting sea control, for instance land attack mission. the ROK Navy is required to reinvigorate sea control mission, such as anti-surface warfare and anti-air warfare. Second, the ROK Navy must seek the way to improve its warfighting capability. It can be achieved by developing high-edge weapons and designing renewed operating concept and embraced new weapon's extended capabilities.

Dynamic Electromyography Analysis of Shoulder Muscles for One-handed Manual Material Handling

  • Mo, Seung-Min;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.313-326
    • /
    • 2015
  • Objective: The objective of this research is to quantitatively analyze muscle activities of arm and shoulder, according to direction in various types of one-handed manual material handling, based on surface electromyography. Background: Workers in industrial sites frequently carry out one-handed manual material handling using arm and shoulder muscles. Therefore, chronic load and accumulated fatigue occur to arm and shoulder muscles, which becomes a main cause of upper arm and shoulder musculoskeletal disorders. The shoulder muscles have widely range of motion, and complex interactions take place among various muscles including rotator cuff muscles. In this regard, research on interactions among should muscles, according to such various dynamic motions, is required. Method: Ten male subjects in their 20s participated in this research. This research considered upward, downward, leftward, rightward, forward and backward directions and fourteen muscles around arm and shoulder (biceps brachii and trapezius, etc.) as independent variables. The mean muscle activity was set as the dependent variable. This research extracted $4^{th}{\sim}7^{th}$ repetition signals according to ten times of repetitive muscle contraction, and analyzed the muscle activity concerned using the envelope detection technique. Results: The mean muscle activity of upward direction was analyzed highly statistically significant. The reason is that the effect of gravity works to arm and shoulder muscles. Also, it is conjectured that deformation of coracoacromial ligament was caused, and its contact pressure increased, due mainly to the shoulder flexion, and therefore load was analyzed high. Muscle activity was analyzed significantly low, according to concentric ballistic motion used in the concentric contraction phase by storing elastic energy in the eccentric contraction phase with a motion to bring the weight to the front of subject's body as to downward, leftward and backward directions. Because, elbow joint's flexion-extension motions mainly occurred, biceps brachii was analyzed high muscle activity as the prime mover. Conclusion: The information on the quantitative load of muscles can be applied to ergonomic work design for one-handed manual material handling to minimize muscle load. Application: This research has effectively identified muscle activity according to dynamic contraction by applying an envelope detection technique. The results can be used for ergonomic work design to minimize muscle load during the one-handed manual material handling, according to each direction. The research results are expected to be used for musculoskeletal disorder prevention and physiotherapy in the rehabilitation medical field, based on the muscle load of arm and shoulder in various directions.

A Study on the Improvement Plan for Enhancing Utilization of Defense Critical Technologies (국방 핵심기술 활용성 증대를 위한 개선 방안 연구)

  • Cho, Il-Ryun;Kim, Chan-Soo;Noh, Sang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.120-125
    • /
    • 2018
  • Various security threats, such as North Korea's nuclear tests and intercontinental ballistic missile developments, are becoming issues. Considering the current security situation in South Korea, proper selection of weapons and efficient defense acquisition systems are essential. In this paper, we conduct a survey and analysis of the defense core technology necessary for the development of weapons systems, and review whether current defense research and development is carried out efficiently. A theoretical study was conducted on ways to enhance the linkage between defense core technology and weapons systems development. As a result of the study, the necessity for development of weapons systems and the linking of defense core technology planning with the need for institutional improvement in enhanced utilization of defense core technology were derived. We propose a method for a long-term weapons systems concept plan that integrates defense core technology planning with forces planning and pre-project research programs to improve planning efficiency.

A Study on the Penetration Characteristics of a Steel Fragment Impacting on the Target Plate of Aluminum 2024 (알루미늄 2024 표적에 대한 HE 탄두 파편의 관통 특성 연구)

  • Kim, Deuksu;Kang, Sunbu;Jung, Daehan;Chung, Youngjin;Park, Yongheon;Park, Seikwon;Hwang, Changsu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.257-268
    • /
    • 2018
  • We have studied the damage mechanism of a metallic thin plate by the highly energetic fragments generated from high explosive(HE) warhead. The penetration process has presumed that the velocity of a fragment is in the range of 350 m/s to 3353 m/s, the thickness of Aluminum 2024 target plate is in the range of 1 mm~6.3 mm thick. The mass of fragment with hemisphere nose shape is in the range of 0.32 g to 16 g. The analytical solution for penetration process has been derived by using the report of the project THOR. The results of analysis implied that the closed forms by an exponentially decay function well fit the change of the ballistic limit velocity, loss velocity and loss mass of fragment as the mass of fragment and the thickness of target plate increase.

Modeling and Simulation for Analyzing Efficient Operations on Public Bike System: A Case Study of Sejong City (공공 자전거 시스템의 효율적 운용을 위한 모델링 및 시뮬레이션: 세종시 사례 중심)

  • Bae, Jang Won;Choi, Seon Han;Lee, Chun-Hee;Paik, Euihyun
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.1
    • /
    • pp.103-112
    • /
    • 2021
  • In recent years, public bicycle systems are widely spread over the world according to the development of ICT technology. Since the public bicycle systems in large cities need to secure both publicity and convenience for citizens, analysis of various their issues from introduction to operation is required. In addition, it is also necessary to prepare for various scenarios for coexistence with the PM business, which is recently in the spotlight as a last mile means and normally managed privately. This paper introduces modeling and simulation for efficient operations of public bicycle systems. In particular, the proposed method was developed in a form that can be easily used in other cities by modeling the general structure and behavior of the public bicycle system, and it was developed to facilitate modification and expansion of the future model with a component-based model configuration. This paper provides a case study of the propose method, which is the public bicycle simulation in Sejong City. The simulation results were derived by applying the data from the public bicycle system of Sejong City, and they were verified with the associated real data of Sejong City. Using the verified model, it is expected that it can be used as a tool to design and analyze various services on the public bicycle systems, which were especially suitable for Sejong City.