• Title/Summary/Keyword: ball-screw

Search Result 232, Processing Time 0.028 seconds

Design of high speed feed drive system in machine tools (고속화를 위한 공작기계 이송계의 설계)

  • 고해주;박성호;정윤교
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.39-44
    • /
    • 1999
  • It can be acquired the high effective productivity through of high speed, precision of machine tools, and then, machine tools will be got a competitive power. Industrially advanced countries already developed that the high speed feed is 60m/min using the high speed ball screw. Also, a lot of problems have happened the feed drive system. It is necessary to study about the character of positioning accuracy, heat generation and high speed control for feed drive system of high speed. In this study, we make use of the feed drive system with a ball screw of large-scale-lead. We'll develop the feed drive system at the speed of 60m/min. Using the design of the mechanical element and the high speed control, the basic design concept can be established. After manufacturing one-shaft feed drive system and conducting the performance test, it'll be analyzed properties of the high speed feed drive system.

  • PDF

Experiment for Position Accuracy Using Laser Scale Unit with 10 Nano-Meter Resoultion (10 nano-meter 분해능을 갖는 laser scale을 이용한 위치 결정 실험)

  • 임선종;정광조;최재완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • This paper describes a positioning system for ultra-precision that will be utilized in semiconductor manufacturing field and precision machinery. This system is composed with laser scale unit with 10nm resolution, ball screw with LM guide, brushless DC servo motor, vibration isolator and is equipped in chamber for continuous measuring environment. The dynamic of table, the problem of servo control and the traceability for micro step motion are described. These data will be applied for getting more stable system with 50nm resolution.

  • PDF

A Revolute Robot Manipulator with a New Structure (새로운 구조의 다관절 로봇 매니퓰레이터)

  • Choi, Hyung-Sik;Kim, Young-Sik;Baek, Chang-Yul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.539-546
    • /
    • 2004
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To overcome this, a new type of the robot actuator based on the four-bar-link mechanism driven by the ball screw was proposed and constructed. Also, a new type of a revolute-jointed robot manipulator composed of the developed actuators was developed. The base axis is actuated by the motor with the conventional speed reducer, but the other axes are actuated by the proposed actuators. The kinematics and dynamics of the robot were analyzed, and the performance test of the robot was made. Through the test results, the performance of superior load capacity versus the robot weight is shown.

A Study on the Fundamental Performance of Electric-driven Bollard (전동식 볼라드의 기본 성능에 관한 연구)

  • Park, Tae-Joon;Jung, Byeong-Gyu;Lee, Kee-Man
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.169-173
    • /
    • 2011
  • This study is about the development of remote controlled bollard using the BLDC motor and ball screw with mechatronics theory. A bollard is composed of the sensor part and the control part. The sensor part is consisted of sensors that detect the locations of a bollard. The role of the control part is adjusting motor speed and power through variable resistance. In order to confirm required performance, the speed of decent and ascent of the bollard, the time and the RPM of BLDC motor were tested according to the variable resistance and the applied load with 10 to $72kg_f$.

An Improvement of Positioning Accuracy for CNC Machine Tools (CNC 공작기계의 위치결정 정밀도 향상에 관한 연구)

  • JEON, Eon Chan;HIROTA, Yasuhiro;TSUTSUMI, Masaomi;NAMGUNG, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.5-11
    • /
    • 1994
  • We have investigated the variation of dwell and warm-up time for effects of positioning accuracy of the CNC machine tools with an laser measuring system. Also, we strdied the effect of improvement of the positioning accuracy by variation of the temperature for hollow ball screw, which mostly used as drive mechanism of CNC machine tools. We dbtained the effectiveness of cooling effect of the new cooling system, compared with the conventional cooling system.

  • PDF

Study on Simulation and Calculation Method of Thermal Error Compensation System for a Ball Screw Feed Drive (볼 스크류 이송장치 열 에러 보상 시스템의 시뮬레이션 및 계산 방법에 관한 연구)

  • Xu, Zhe Zhu;Choi, Chang;Kim, Lae-Sung;Baek, Kwon-In;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.88-93
    • /
    • 2017
  • Due to the requirement of the development of the precision manufacturing industry, the accuracy of machine tools has become a key issue in this field. A critical factor that affects the accuracy of machine tools is the feed system, which is generally driven by a ball screw. Basically, to improve the performance of the feed drive system, which will be thermally extended lengthwise by continuous usage, a thermal error compensation system that is highly dependent on the feedback temperature or positioning data is employed in the machine tool system. Due to the overdependence on measuring technology, the cost of the compensation system and low productivity level are inevitable problems in the machine tool industry. This paper presents a novel feed drive thermal error compensation system method that could compensate for thermal error without positioning or temperature feedback. Regarding this thermal error compensation system, the heat generation of components, principal of compensation, thermal model, mathematic model, and calculation method are discussed. As a result, the test data confirm the correctness of the developed feed drive thermal error compensation system very well.

Frictional Characteristics at High Temperature of Water-lubricated Stainless Steel Ball Bearing (수윤활 스테인레스강 볼베어링의 고온 마찰 특성)

  • Lee Jae-Seon;Kim Jong-In;Kim Ji-Ho;Park Hong-Yune;Zee Sung-Qunn
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.324-328
    • /
    • 2003
  • Water-lubricated frictional characteristics of stainless steel ball bearing is not well known compared to oil-lubricated frictional characteristics. Furthermore study on friction at high temperature is rare because bearing maintenance strategy for water-lubricated or chemicals-lubricated bearings of equipment is mostly based on change of failed bearings and parts. Ball bearings and ball screw are installed on the power transmission for a developing integral reactor and these are lubricated with high temperature and high pressure chemically-controlled pure water. Bearings and power transmitting mechanical elements for an atomic reactor needs high reliability. and high performance during estimated lifetime, and it should be verified. In this paper, experimental research results of frictional characteristics of water-lubricated ball bearing as a preliminary investigation.

  • PDF

A Study on the Evalution of Rotational and Linear Movement Error in Thread Grinder (나사연삭기 회전전달 및 테이블 이송오차 평가에 관한 연구)

  • Park, Cheol-U;Yoon, Yeong-Sik;Lee, Sang-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 1996
  • It is one of the important causes that the precision of the thread grinder decide the machining errors of the ball screw. The approach described in this study demonstrates how the dominant causes of the inaccuracies in thread grinding system can be determined. To evaluate the machining error of thread grinder, rotary encoder is allocated to spindle shaft and master screw for measuring the rotational transfer error between spindle shaft and master screw and the laser measuring system is used for checking the movement error.

  • PDF