• Title/Summary/Keyword: ball screws

Search Result 37, Processing Time 0.022 seconds

Effect of 2nd Axis Linear Motion Guide on Mechanical Performance of Robot in 2-Axis Cartesian Coordinate Robot (2축 직교좌표 로봇에서 2축 직선 운동 가이드가 로봇의 기계적 성능에 미치는 영향)

  • Lee, Jong Shin
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.95-103
    • /
    • 2011
  • Robots in various types carry and assemble parts through repeatedly and accurately moving to stored locations by combining linear motions. And, linear systems are used in orthogonal axes of robots and driven via ball screws, such as 2-axis cartesian coordinate robot in this paper. This paper presents the effect of the linear motion guide that is used in $2^{nd}$ axis in 2-axis cartesian coordinate robot. Some simulation results show that the linear motion guide influence greatly in robot performance such as the nominal life of linear guide. When use LM guide that have capacity near in $2^{nd}$ axis, this paper show that the nominal life on LM block of $1^{st}$ axis increases 37.4% and that the specification of $2^{nd}$ axis LM guide influences greatly the nominal life of $1^{st}$ axis LM block.

Friction Force Compensation for Actuators of a Parallel Manipulator Using Gravitational Force (중력을 이용한 병렬형 머니퓰레이터 구동부의 마찰력 보상)

  • Lee Se-Han;Song Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.609-614
    • /
    • 2005
  • Parallel manipulators have been used for a variety of applications, including the motion simulators and mechanism for precise machining. Since the ball screws used for linear motion of legs of the Stewart-Gough type parallel manipulator provide wider contact areas than revolute joints, parallel manipulators are usually more affected by frictional forces than serial manipulators. In this research, the method for detecting the frictional forces arising in the parallel manipulator using the gravitational force is proposed. First, the reference trajectories are computed from the dynamic model of the parallel manipulator assuming that it is subject to only the gravitational force without friction. When the parallel manipulator is controlled so that the platform follows the computed reference trajectory, this control force for each leg is equal to the friction force arising in each leg. It is shown that control performance can be improved when the friction compensation based on this information is added to the controller for position control of the moving plate of a parallel manipulator.

Implant-supported overdenture with prefabricated bar attachment system in mandibular edentulous patient

  • Ha, Seung-Ryong;Kim, Sung-Hun;Song, Seung-Il;Hong, Seong-Tae;Kim, Gy-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.4
    • /
    • pp.254-258
    • /
    • 2012
  • Implant-supported overdenture is a reliable treatment option for the patients with edentulous mandible when they have difficulty in using complete dentures. Several options have been used for implant-supported overdenture attachments. Among these, bar attachment system has greater retention and better maintainability than others. SFI-Bar$^{(R)}$ is prefabricated and can be adjustable at chairside. Therefore, laboratory procedures such as soldering and welding are unnecessary, which leads to fewer errors and lower costs. A 67-year-old female patient presented, complaining of mobility of lower anterior teeth with old denture. She had been wearing complete denture in the maxilla and removable partial denture in the mandible with severe bone loss. After extracting the teeth, two implants were placed in front of mental foramen, and SFI-Bar$^{(R)}$ was connected. A tube bar was seated to two adapters through large ball joints and fixation screws, connecting each implant. The length of the tube bar was adjusted according to inter-implant distance. Then, a female part was attached to the bar beneath the new denture. This clinical report describes two-implant-supported overdenture using the SFI-Bar$^{(R)}$ system in a mandibular edentulous patient.

Development of Deployment Test Equipment Suitable for Single Large Solar Panel (하나의 큰 태양전지판에 적합한 전개시험장치 개발)

  • Moon, Hong-Youl;Park, Sangho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.583-591
    • /
    • 2018
  • In this paper, we propose a new deployment test equipment that is characterized for the deployment test of single large solar panel with tape spring hinge. To perform the deployment test on ground, a device that takes gravity compensation into account should be used to create a zero gravity environment similar to that in orbit. We analyzed the advantages and disadvantages of the most commonly used deployment test equipment in the past through simple conceptual design, analysis, and tests to judge whether it is applicable to the deployment of the solar panel to be tested. A dummy frame was proposed to reduce the air drag effect during on-ground test and a self-aligning ball bearing and adjusting screws were applied to the deployment test equipment to solve the alignment problem with the gravity axis. And a horizontal bearing for radial movement applied to compensate for the change of the axis of the tape spring hinge. From these, we solved the problems of the conventional deployment test equipment by developing and verifying the new deployment test equipment characterized for the solar panel to be deployed in this paper.

Development of Three D.O.F Alignment Stage for Vacuum Environment (진공용 3자유도 얼라인먼트 스테이지 개발)

  • Han, Sang-Jin;Park, Jong-Ho;Park, Hui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.138-147
    • /
    • 2001
  • Alignment systems are frequently used under various semiconductor manufacturing environment. Particularly in PDP(Plasma Display Panel) manufacturing process, the alignment system is applied to the combining and sealing processes of the upper and lower glass panels of PDP, where these processes are performed in the vacuum chamber of high vacuum and high temperature. In this paper, the XYΘ-alignment stage is developed to align PDP panels. Because of high vacuum and high temperature environment, the alignment chamber has been designed to isolate the inner part of the alignment chamber from the outer environment of high vacuum and high temperature, in which every part of the alignment stage is inserted. As it is difficult to attach feedback sensors to the alignment stage in the alignment chamber, the alignment stage is implemented with the open loop algorithm, where the parallel link structure has been designed using step-motors and ball-screws for structural simplicity. The kinematic analysis is performed to drive the parallel link structure, based on the experiments of actuation-compensation of the alignment stage. For the error compensation, the hyperpatch model has been used to model the errors. From the experiments, the positional accuracy of the alignment stage can be improved significantly.

  • PDF

The Design of an Auto Tunning PI Controller using Parameter Estimation Method for the Linear BLDC Motor (선형 추진 BLDC 모터에 대한 파라미터 추정기법을 이용하는 오토튜닝(Auto Tunning) PI 제어기설계)

  • Cha, Young-Beom;Song, Do-Ho;Kim, Jin-Ae;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.959-962
    • /
    • 2005
  • Servomotors are used as key components of automated system by performing accurate positioning, accurate speed regulation, and precise motion control in response to commands from computers and sensors. Especially linear brushless servomotors have numerous advantages over ball screws, timing belts, rack/pinion drives and friction drives compared with rotary servomotors. This paper proposes the estimation of unknown parameters from the linear brushless DC motor which is operated by sinusoidal commutation. The estimated parameters are used to tune the controller gain and disturbance observer. In order to agree with this purpose, Digital Signal Processor(TMS320F240), developed for implementation of a speed Field Oriented Control(FOC), adopted in this study. The processor playing an important role in controller has A/D converters, PWM generators, riched I/O port internally.

  • PDF

The Design of an Auto Tuning PI Controller using a Parameter Estimation Method for the Linear BLDC Motor (선형 추진 BLDC 모터에 대한 파라미터 추정 기법을 이용하는 오토 튜닝(Auto Tuning) PI 제어기 설계)

  • Cha Young-Bum;Song Do-Ho;Koo Bon-Min;Park Moo-Yurl;Kim Jin-Ae;Choi Jung-Keyng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.659-666
    • /
    • 2006
  • Servo-motors are used as key components of automated system by performing precise motion control as accurate positioning and accurate speed regulation in response to the commands from computers and sensors. Especially, the linear brushless servo-motors have numerous advantages over the rotary servo motors which have connection with the friction induced transfer mechanism such as ball screws, timing belts, rack/pinion. This paper proposes an estimation method of unknown motor system parameters using the informations from the sinusoidal driving type linear brushless DC motor dynamics and outputs. The estimated parameters can be used to tune the controller gain and a disturbance observer. In order to meet this purpose high performance Digital Signal Processor, TMS320F240, designed originally for implementation of a Field Oriented Control(FOC) technology is adopted as a controller of the liner BLDC servo motor. Having A/D converters, PWM generators, rich I/O port internally, this servo motor application specific DSP play an important role in servo motor controller. This linear BLDC servo motor system also contains IPM(Intelligent Power Module) driver and hail sensor type current sensor module, photocoupler module for isolation of gate signals and fault signals.