• Title/Summary/Keyword: ball passage frequency

Search Result 2, Processing Time 0.016 seconds

Dynamic Model to Predict Effect of Race Waviness on Vibrations Associated with Deep-Groove Ball Bearing

  • Hwang, Pyung;Nguyen, Van Trang
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.64-70
    • /
    • 2014
  • This paper presents a numerical model for investigating the structural dynamics response of a rigid rotor supported on deep-groove ball bearings. The numerical model was used to investigate the influence of race waviness on the dynamic characteristics of a rotor ball bearing system, which is very important from a design viewpoint. The forth-order Runge-Kutta numerical integration technique was applied to determine the time displacement response, Poincare map, and frequency spectra. The analysis demonstrated that the model can be used as a tool for predicting the nonlinear dynamic behavior of a rotor ball bearing system under different operating conditions. The results of this study may help further understanding of the nonlinear dynamics of a rotor bearing system.

Dynamic Analysis of Effect of Number of Balls on Rotor-Bearing System

  • Hwang, Pyung;Nguyen, Van Trang
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.248-254
    • /
    • 2013
  • This paper presents a numerical model for investigating the structural dynamic response of an unbalanced rotor system supported on deep groove ball bearings. The aim of this work is to develop a numerical model for investigating the effect of the number of balls on the dynamic characteristics of the rotor ball bearing system. The fourth-order Runge-Kutta numerical integration technique has been applied. The results are presented in the form of time displacement responses and frequency spectra. The analysis demonstrates that the model can be used as a tool for predicting the nonlinear dynamic behavior of the rotor ball bearing system under different operating conditions. Moreover, the study may contribute to a further understanding of the nonlinear dynamics of rotor bearing systems.