• Title/Summary/Keyword: ball milling

Search Result 823, Processing Time 0.021 seconds

Influence of Coating Agent and Particle Size on the Soft Magnetic Properties of Fe Based Nano Crystalline Alloy Powder Core (철기(Fe Based) 나노결정질 합금 분말코어의 코팅제 및 입도가 연자기적 특성에 미치는 영향)

  • Jang, S.J.;Choi, Y.J.;Kim, S.W.;Jeon, B.S.;Lee, T.H.;Song, C.B.;Namkung, J.
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.67-73
    • /
    • 2015
  • This is a basic research for improving soft magnetic property of Fe based nano crystalline alloy powder core. The main study is done around characteristics of permeability, core loss, and DC bias depending on amount of insulation coating agent and particle size. First, $Fe_{73.5}Si_{13.5}B_9Nb_3Cu_1$ amorphous alloy ribbon was fabricated by using the planar flow casting (PFC) device. Then, heat treatment and ball milling were done to obtain alloy powder. The amount of polyether imide (PEI) added to it was varied by 0.5, 1.0, 2.0, 2.5 wt% to have compression molding into $16ton/cm^2$. After going through crystalline heat treatment, the made toroidal nano crystalline powder core ($OD12.7mm^*ID7.62mm^*H4.75mm$) had smaller permeability as amount of insulation coating agent decreases. However, it was found out that core loss and DC bias characteristics have been improved. The reason for this results were expected to be because green density of power core decreases as amorphous alloy powder particles become smaller as amount of alloy powder insulation coating agent increases, it was determined that 1 wt% of insulation coating agent is appropriate. Also, for powder core made based on alloy powder size with amount of insulation coating agent fixed at 1 wt%, effective permeability and core loss were outstanding as particle size became bigger. However, characteristics of DC bias became worse as applied DC field increases. This is expected to be due to insulation effect, residual pores, or molding density of powder core resulting from thickness of coating on surface of alloy powder.

Study on Oxidation and Coercivity of Nd2Fe14B Compound Crystal (Nd2Fe14B 화합물 결정의 산화 및 보자력에 관한 연구)

  • Kwon, H.W.;Yu, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.85-90
    • /
    • 2012
  • Oxidation of the $Nd_2Fe_{14}B$ compound crystal and its effect on the coercivity of the fine $Nd_2Fe_{14}B$ crystal particles were investigated. Oxidation kinetics of the $Nd_2Fe_{14}B$ compound crystal was investigated using an excessively grown $Nd_2Fe_{14}B$ grains in the $Nd_{15}Fe_{77}B_8$ alloy ingot. Oxidation of the $Nd_2Fe_{14}B$ compound crystal occurred by dissociation of the phase into multi-phase mixture of ${\alpha}$-Fe, $Fe_3B$, and Nd oxides. Oxidation rate of the $Nd_2Fe_{14}B$ compound crystal showed no dependence on the crystallographic direction. The oxidation reaction was modeled according to simple linear relationship. Activation energy for the oxidation of $Nd_2Fe_{14}B$ compound crystal was calculated to be approximately 26.8 kJ/mol. Fine $Nd_2Fe_{14}B$ crystal particles in near single domain size was prepared by ball milling of the HDDR-treated $Nd_{15}Fe_{77}B_8$ alloy, and these particles were used for investigating the effect of oxidation on the coercvity. The near single domain size $Nd_2Fe_{14}B$ crystal particles (${\fallingdotseq}0.3\;{\mu}m$) had high coercivity over 9 kOe. However, the coercivity was radically reduced as the temperature increased in air (<2 kOe at $200^{\circ}C$). This radical coercivity reduction was attributed to the soft magnetic phases, ${\alpha}$-Fe and $Fe_3B$, which were formed on the surface of the fine particles due to the oxidation.

The Effect of BaF2 Particle Size for Zirconium Recycling by Precipitation from Waste Acid and Ba2ZrF8 Vacuum Distillation Property (폐 산세 용액으로부터 공침 반응에 의한 지르코늄 회수 시 BaF2 입도 영향 및 Ba2ZrF8의 진공증류 특성)

  • Choi, Jeong Hun;Nersisyan, Hayk;Han, Seul Ki;Kim, Young Min;Park, Cheol-Ho;Kahng, Jong Won;Na, Ki Hyun;Kim, Jeong hun;Lee, Jong Hyeon
    • Resources Recycling
    • /
    • v.26 no.6
    • /
    • pp.29-37
    • /
    • 2017
  • Nuclear fuel cladding tube is fabricated by pilgering and annealing process. In order to remove impurity and oxygen layer on the surface, pickling process is carried out. When Zirconium(Zr) is dissolved and saturated in acid solution during the pickling process, all the waste acid including Zr is disposed. Therefore, $BaF_2$ is added into the waste acid to extract Zr and $Ba_2ZrF_8$ is subsequently formed. To recycle Zr by electrowinning process, $Ba_2ZrF_8$ is used as electrolyte, but it has high melting point ($1053^{\circ}C$). $ZrF_4$ should be added into $Ba_2ZrF_8$ to decrease the melting point. In this paper, it was investigated that $Ba_2ZrF_8$ was separated to $BaF_2$ and $ZrF_4$ by vacuum distillation. Firstly, $BaF_2$ with different particle size ($1{\mu}m$, $35{\mu}m$, $110{\mu}m$) was added into the waste acid and the respective precipitation property was estimated. $BaF_2$ obtained by vacuum distillation was shattered by ball-milling with different time. The precipitation efficiency was compared with $1{\mu}m$ of ${BaF_2}^{\prime}s$ one, which was not used as precipitation agent.