• 제목/요약/키워드: ball bearing

검색결과 471건 처리시간 0.025초

Oil-Jet Ball 윤활시 가스터빈용 고속 Ball Bearing 윤활특성

  • 김기태;권우성
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1996년도 제24회 춘계학술대회
    • /
    • pp.86-93
    • /
    • 1996
  • The lubrication characteristics of high-speed ball bearings has been investigated empirically using 45mm bore split inner ring ball bearings employed in small industrial gas turbine engines with oil-jet lubrication method. For the close structural simulation, experiments carried out with bearing mounting supports of real engines, such as bearing housings and oil nozzle assemblies with squeeze film dampers. Thus the results of tests can be directly applied to the design and the development of gas turbine engines. Testing was done by varying operating speeds, axial load on bearings, and lubricant flowrates. During testing, the temperature of bearing at outer-ring face, the power consumption of the driving motor, and the rotating resistance of the bearing were measured. From this study, the representative factors for lubrication characteristics at high speed was found, and the most important one was not operating speed but axial load up to 1.95 million dmN speed and 303 kgf axial load. Furthermore, the detailed variation of the rotational resistance of the bearing could be visualized by measuring the change of the radial load under the bearing supports. The rotational resistance consists of the frictional resistance and the bearing-cavity oil resistance.

  • PDF

유전자 알고리즘을 이용한 깊은 홈 볼 베어링의 고부하용량 설계 (Genetic Algorithm Based Design of Beep Groove Ball Bearing for High-Load Capacity)

  • 윤기찬;조영석;최동훈
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.167-173
    • /
    • 1999
  • This paper suggests a method to design the deep groove ball bearing for high-load capacity by using a genetic algorithm. The design problem of ball bearings is a typical discrete/continuous optimization problem because the deep groove ball bearing has discrete variables, such as ball size and number of balls. Thus, a genetic algorithm is employed to find the optimum values from a set of discrete design variables. The ranking process is proposed to effectively deal with the constraints in genetic algorithm. Results obtained fer several 63 series deep groove ball bearings demonstrated the effectiveness of the proposed design methodology by showing that the average basic dynamic capacities of optimally designed bearings increase about 9~34% compared with the standard ones.

  • PDF

구름요소의 Waviness 를 고려한 볼베어링 해석 이론 (Analytical Theory of Ball Bearing Considering Waviness of Rolling Elements)

  • 정성원;장건희
    • 한국소음진동공학회논문집
    • /
    • 제11권7호
    • /
    • pp.275-286
    • /
    • 2001
  • The research presents an analytical theory to calculate the characteristics of the bal bearing with waviness in its rolling elements considering the centrifugal force and gyroscopic moment of bal. The effects of centrifugal force and gyroscopic moment are introduced to the kinematic constraints and force equilibrium equations. and the waviness of rolling elements is modeled by sinusoidal function to calculate the contact force at each ball. The numerical solutions of governing equation of berating due to waviness are calculated by using the Newton-Raphson method. The accuracy of the research is validated by comparing the contact force. contact angle in case of considering the centrifugal force and gyroscopic moment of bal and the contact force and vibration frequencies in cases of considering waviness with the prior researches respectively. It investigates the stiffness, contact force. displacement and vibration frequencies of the ball bearing considering not only the centrifugal force and gyroscopic moment of ball but also the waviness of the rolling elements.

  • PDF

볼 베어링의 구름 요소 주위 유동 특성에 대한 해석 (Analysis of Fluid Flow Characteristics Around Rolling Element in Ball Bearings)

  • 조준현;김충현
    • Tribology and Lubricants
    • /
    • 제28권6호
    • /
    • pp.278-282
    • /
    • 2012
  • Various bearings such as deep-groove ball bearings, angular-contact ball bearings, and roller bearings are used to support the load and to lubricate between the shaft and the housing. The bearings of potential rolling systems in a turbo pump are the deep-groove ball bearings as comparing with the bearings with rolling elements such as cylindrical rollers, tapered cylindrical rollers, and needle rollers. The deep-groove ball bearings consist of rolling elements, an inner raceway, an outer raceway and a retainer that maintain separation and help to lubricate the rolling element that is rotating in the raceways. In the case of water-lubricated ball bearings, however, fluid friction between the ball and raceways is affected by the entry direction of flow, rotation speed, and flow rate. In addition, this friction is the key factor affecting the bearing life cycles and reliability. In this paper, the characteristics of flow conditions corresponding to a deep-groove ball bearing are investigated numerically, with particular focus on the friction distribution on the rolling element, in order to extend the analysis to the area that experiences solid friction. A simple analysis model of fluid flow inside the water-lubricated ball bearing is analyzed with CFD, and the flow characteristics at high rotation speeds are presented.

그루브를 가진 함유소결베어링의 마찰 및 전기적 특성 (Friction and Electrical Characteristics of Oil-impregnated Sintered-Metal Bearing with Grooves)

  • 정광섭;김병주;송무석;이영제
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.108-114
    • /
    • 1997
  • The electrical and frictional properties of new sintered-metal bearing (S-bearing) with varying loads and speeds were measured. Also those were compared with the same products(J-bearing) made in Japan and the conventionally used ball bearing. The test results show that the frictional values of S-bearing are less than those of J-bearing, and that S-bearing operates in full-hydrodynamic lubrication regime. The values of rating current, starting time and jitter reveal that S-bearing is superior to J-bearing as well as ball bearing.

고속 주축베어링의 볼 접촉각 변동을 고려한 주축 설계공차 (Design Tolerance of High Speed Spindle considering the Variation of Ball Contact Angle in the Angular Contact Ball Bearings)

  • 이찬홍
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.609-615
    • /
    • 2010
  • Angular contact ball bearings in a high speed spindles are under the extreme conditions, such as high temperature, big centrifugal force and thrust cutting forces. So, the assembly contacts between spindle shaft and inner ring bearings, bearing housing and outer ring of bearings are occasionally unstable at high speed revolution. Furthermore, the ball contact angle of a bearing, which influence stiffness and lifetime of bearings, are changed according to loads and rotational speed. To analyze internal forces of a bearing under high speed revolution, the ball contact are calculated using nonlinear equations in consideration of rotational speed, thrust loads and raceway form. Diameter increase of inner and outer ring by influence factors, such as internal forces to inner and outer ring, centrifugal force and temperature of inner and outer rings are calculated to establish stable state in bearing assembly in high speed spindle. Finally, contribution ratio of influence factor to assembly design tolerance of inner and outer rings are shown and the stable assembly design tolerance are proposed.

볼 베어링과 형상오차를 갖는 하우징의 끼워 맞춤에 따른 베어링 진동 및 피로 수명의 영향 (Bearing Vibration and Fatigue Life Analysis According to Fitting between Ball Bearing and Housing with Geometrical Errors)

  • 이영근;이석훈;정일권;차철환;한효섭
    • 한국소음진동공학회논문집
    • /
    • 제16권5호
    • /
    • pp.441-451
    • /
    • 2006
  • It is known that ball bearings mounted in housing or on shaft are playing a key role to keep it running smoothly. The roundness of a housing bore on which bearing outer ring is mounted with interference has directly affected the running accuracy of bearing. The running accuracy of bearing, therefore, can extend the significant influence to the rotating machinery as well. In this paper, bearing's vibration and fatigue life considering raceway roundness of ball bearing before and after mounted in housing bore are theoretically estimated. To perform analysis, a simple three degrees of freedom model was proposed and then Newton-Raphson iterative method was introduced to be utilized in the analysis. The results show that the vibration magnitude of ball bearing fitted into housing unit is appeared considerably larger than the one of its pre-assembling. And theoretical $L_{10}$ life which ninety percent of the bearing population will endure decreased in about fifty percent.

형상오차를 갖는 보올 베어링과 하우징의 끼워 맞춤에 따른 베어링 진동 및 수명의 영향 (Bearing Vibration and Fatigue Life Analysis According to Fitting between Ball Bearing and Housing with Geometrical Errors)

  • 이영근;이석훈;정일권;차철환;한효섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.112-118
    • /
    • 2005
  • Ball bearings which were fitted between housing and shaft play an important role in rotating shaft system smoothly, Therefore bearing's running accuracy has significant influence on that of rotating machinery. Manufacturing accuracy of bearings as well as that of shaft and housing is main factor to affect bearing running accuracy In this paper, bearing's vibration and fatigue life considering raceway roundness of ball bearing before and after being fitted into housing are theoretically estimated. To perform analysis, a simple three degrees of freedom model was proposed and then these analysis was conducted utilizing the Newton-Raphson iterative method. The results show that vibration magnitude of ball bearing fitted into housing is considerably larger than before assembly, and bearing's theoretical L$_{10}$ fatigue life that ninety percent of the bearing population will endure decreased in about fifty percent.

  • PDF

전산유체역학을 이용한 케이지가 고려된 볼 베어링의 토크 예측 (Torque Prediction of Ball Bearings Considering Cages using Computational Fluid Dynamics)

  • 박정수;김정식;이승표
    • Tribology and Lubricants
    • /
    • 제40권1호
    • /
    • pp.1-7
    • /
    • 2024
  • Ball bearings are a major component of mechanical parts for transmitting rotation. Compared to tapered roller bearings, ball bearings offer less rolling resistance, which leads to reduced heat generation during operation. Because of these characteristics, ball bearings are widely used in electric vehicles and machine tools. The design of ball bearing cages has recently emerged as a major issue in ball bearing design. Cage design requires pre-verification of performance using theoretical or experimental formula or computational fluid dynamics (CFD). However, CFD analysis is time-consuming, making it difficult to apply in case studies for design decisions and is mainly used in performance prediction following design confirmation. To use CFD in the early stages of design, main-taining analytical accuracy while reducing the time required for analysis are necessary. Accordingly, this study proposes a laminar steady-state segment CFD technique to solve the problem of long CFD analytical times and to enable the use of CFD analysis in the early stages of design. To verify the reliability of the CFD analysis, a bearing drag torque test is performed, and the results are compared with the analytical results. The proposed laminar steady-state segment CFD technique is expected to be useful for case studies in bearing design, including cage design.

경방향 하중을 받는 스핀들 베어링 계의 동특성 연구 (Study on Dynamic Characteristics of Spindle-bearing System Subjected to Radial Load)

  • 최춘석;홍성욱
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.740-746
    • /
    • 2013
  • Angular contact ball bearings are often adopted for a high-speed spindle owing to their durability against axial and radial loads. The dynamic characteristics of an angular contact ball bearing, however, are very complicated because they are dependent on the applied loads as well as on the system configuration. This study systematically analyzes the radial-load-dependent characteristics of spindles as well as angular contact ball bearings. Toward this end, a spindle dynamic model along with the bearing dynamics model is established. An iterative solution algorithm is implemented to resolve the statically indeterminate problem associated with spindle-bearing systems subjected to radial load. Two numerical examples are provided to investigate the spindle and bearing characteristics as a function of radial load with regard to the system configuration.