• Title/Summary/Keyword: ball bearing

Search Result 470, Processing Time 0.027 seconds

Fluidity of Cement Paste and Fluidity and Compressive Strength of Cement Mortar Substituted by Pozzolanic fine Powders and II-Anhydrite (포졸란계 미분말과 ∥ 형 무수석고 치환 시멘트 페이스트 유동성과 시멘트 모르타르의 유동성 및 압축강도)

  • 노재성;이범재;김도수;이병기
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.3
    • /
    • pp.149-156
    • /
    • 1997
  • In order to improve compressive strength of cement mortar, powder admixture(FAS) was mmufactured by mixing fly ash. Il-anhydite and silica hume, and superplasticizer was used for the control of fluidity reduction with the use of this admixture. Cement was substituted by 10, 20wt% of FAS respectively. At W/S = 0.40, the fluidity of' cement paste substituted by PAS was decreased. NSF and NT-2 were very effective fbr the control of fluidity reduction. As the particle size of U -anhydrite was fine, the fluidity of cement mortar was increased. The fluidity reduction of cement mortar substituted by 10wt% of FAS was controlled. The compressive strength of cement mortar substituted by 10wt% of FAS showed higher. value than that of 20wt%, expecially specimen(C1) substituted by 10wt% of $\gamma$ had the highest compressive strength value.

The Properties of Strength Development of High Volume Fly Ash Concrete with Reduction of Unit Water Content (단위수량 저감에 따른 하이볼륨 플라이애시 콘크리트의 강도 발현 특성)

  • Choi, Yun-Wang;Park, Man-Seok;Choi, Byung-Keol;Oh, Sung-Rok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.46-51
    • /
    • 2014
  • In this study, strength development properties of high volume fly ash concrete was evaluated through compressive strength of concrete with reduction of unit water content. And concrete specimens were prepared according to target strength 3 level and variation of unit water content. As a result, the improved fluidity were obtained as a result of the ball bearing action of the spherical, the electrostatic repulsion and the particle size distribution of fly ash particles in case of using more than 50% fly ash. Through this, the mixture of fly ash has been shown to reduce the amount of water required in concrete. Also, the early strength of high volume fly ash concrete with reduction of unit water content was improved more about 66% than general concrete mixture.

Phenotypic Diversity of Shea(Vitellaria Paradoxa C. F. Gaertn.) Populations across Four Agro-Ecological Zones of Cameroon

  • Nafan, Diarrassouba;Divine, Bup Nde;Cesar, Kapseu;Christophe, Kouame;Abdourahamane, Sangare
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.223-230
    • /
    • 2007
  • Vitellaria paradoxa commonly called shea is an important agro forestry and fruit-bearing species present in four agro-ecological zones of Cameroon. The goal of this work was the morphological characterization of certain populations of V. paradoxa which will serve as a necessary step for a subsequent genetic study of the species. Morphological observations related to 20 agronomic traits, studied on 8-13 trees selected from each of the eight shea populations across four different agro-ecological zones located in four provinces of Cameroon were studied. The study showed that there was a variation between the populations, related to the traits measured on the trunk, fruit, nut, and leaf. Three shapes of the tree(ball, broom, and trained), five shapes of the fruit(round, oblong, reversed pear, ovoid, and oblong), three colors of the nut(clear brown, dark brown, and blackish brown) were identified. The principal component analysis(PCA) carried out on the quantitative characters revealed 72% of the total variance expressed on the first and second main axis. This variation was essentially explained by the traits measured on the fruits and on the nuts. The analyses showed that only the traits of the fruits and the nuts were discriminative. The shea populations studied were structured into two distinct groups using these discriminative traits.

  • PDF

Rolling Contact Fatigue and Residual Stress Properties of SAE52100 Steel by Ultrasonic Nano-Crystalline Surface Modification (UNSM) (초음파 나노표면 개질처리를 통한 베어링강의 회전접촉피로 및 잔류응력 특성에 대한 연구)

  • Lee, Changsoon;Park, Ingyu;Cho, Insik;Hong, Junghwa;Jhee, Taegu;Pyoun, Youngsik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • To investigate the effect of ultrasonic nano-crystalline surface modification (UNSM) treatment on rolling contact fatigue and residual stress properties of bearing steels, this paper carried out a rolling contact fatigue test, measured residual stress and retained austenite, performed a wear test, observed microstructure, measured micro hardness, and analyzed surface topology. After the UNSM treatment, it was found that the surface became minute by over $100{\mu}m$. The micro surface hardness was changed from Hv730~740 of base material to Hv850~880 with about 20% improvement, and hardening depth was about 1.3 mm. The compressive residual stress was measured as high as -700~-900 MPa, and the quantity of retained austenite was reduced to 27% from 34%. The polymet RCF-6 ball type rolling contact fatigue test showed over 4 times longer fatigue lifetime after the UNSM treatment under 551 kgf load and 8,000 rpm. In addition, this paper observed the samples, which went through the rolling contact fatigue test, with OM and SEM, and it was found that the samples had a spalling phenomenon (the race way is decentralized) after the UNSM treatment. However, before the treatment, the samples had excessive spalling and complete exploration. Comparison of the test samples before and after the UNSM treatment showed a big difference in the fatigue lifetime, which seems to result from the complicated effects of micro particles, compressive residual stress, retained austenite, and surface topology.

Experimental Study on the Material Properties of High Strength Concrete with Hollow Glass Powder (유공유리분말 혼입 고강도 콘크리트의 물성에 관한 실험적 연구)

  • Yoon, Seob;Lee, Han-Yong;Seo, Tae-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.313-319
    • /
    • 2020
  • In this study, in order to confirm the applicability of Hollow Glass Powder(HGP) in 70MPa-class high strength concrete, the fresh and hardened states were examined according to the amount of HGP, and the results are as follows. The flow characteristics showed that the slump flow increased slightly as the amount of HGP was increased, and the T500 was slightly shortened as the amount of HGP was increased, and the rebar passing ability was improved due to the ball bearing effect of HGP. In particular, it showed the best rebar passing ability at a usage of 1.0kg/㎥. The use of HGP 1.0kg/㎥ resulted in a 40% reduction in plastic viscosity, but the viscosity increased at 2.0kg/㎥. Through experiments, it was confirmed that HGP was helpful in improving the workability of high-strength concrete, and the usage of 1.0kg/㎥ is considered to be the most appropriate. It was confirmed that HGP does not affect concrete compressive strength.

The effect of hip joint strengthening exercise using proprioceptive neuromuscular facilitation on balance, sit to stand and walking ability in a person with traumatic brain injury: a case report

  • Jung, Du Kyo;Chung, Yijung
    • Physical Therapy Rehabilitation Science
    • /
    • v.6 no.2
    • /
    • pp.96-104
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the effect of the hip joint strengthening exercises using proprioceptive neuromuscular facilitation (PNF) on the clinical symptoms and the treatment effects in balance, sit to stand, and gait abilities in patients with TBI. Design: A single case study. Methods: A 13-year-old adolescent with quadriplegia and hip joint control impairment participated in this four-week training intervention. The patient, diagnosed with TBI, wastreated with hip joint strengthening exercises using PNF. In the first week, we focused on strengthening the body, relaxing the hip flexors and activating the hip extensor muscles in order to solve the patient's physical function and body structure. From the 2nd and 4th week, we improved the motivation through the task-oriented method, and then weight-bearing training of the right lower extremity was proceeded by kicking a soccor ball with the left lower extremity. The exercises were performed for 4 weeks, 5 days a week, for 60 minutes with the exercise intensity gradually increased according to the subject's physical abilities. Results: As a result of the study, the patient demonstrated improvements in the physical examination, which were evaluated before and after intervention and included the manual muscle test, modified Ashworth scale, sensory assessment, coordination assessment, Berg balance scale, 5-time sit to stand test, and the 10 meters walk test. Conclusions: The results of this case suggest that a hip joint strengthening exercise program using PNF may improve hip control ability, balance, sit to stand and gait ability in a patient with TBI.

Comparison of Underwater Drop Characteristics for Hazard Apparatuses on Subsea Cable Using Fluid-Structure Interaction Analysis (유체-구조 연성해석 기반 해저케이블 위해인자의 수중낙하 특성 비교)

  • Jang, Gyung-Ho;Kim, Jeong-Hun;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.324-332
    • /
    • 2018
  • It is known that damages to the subsea cables used for electric power transmission between islands and countries, including renewable energy from offshore wind power, current, tides, etc., cost much to restore, which causes social and economic losses. Various types of fishing rigs and anchors have been reported to be the greatest hazards to subsea cables. It is possible to design and construct a suitable protection facility for a subsea cable by precisely estimating the underwater behavior of such hazardous apparatuses. In this study, numerical simulations of the underwater behaviors of various hazardous apparatuses were carried out using fluid-structure interaction (FSI) analysis as a basic study to simulate the actual behavior phenomena of hazardous apparatuses in relation to a subsea cable. In addition, the underwater drop characteristics according to the types of hazardous apparatuses were compared. In order to verify the accuracy of the FSI analysis method used in this study, we compared the test results for underwater drops of a steel ball bearing. Stock anchors, stockless anchors, and rocket piles, which were actually reported to be the cases of damage to subsea cables along the southwest coast of Korea, were considered as the hazardous apparatuses for the numerical simulations. Each hazardous apparatus was generated by a Lagrangian model and coupled with the fluid domain idealized by the Eulerian equation to construct the three-dimensional FSI analysis model. The accuracy of the numerical simulation results was verified by comparing them with the analytical solutions, and the underwater drop characteristics according to the types of hazard apparatuses were compared.

Effects of Sensorimotor Training Volume on Recovery of Knee Joint Stability in Patients following Anterior Cruciate Ligament Reconstruction

  • Shim, Jae-Kwang;Choi, Ho-Suk
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.27-32
    • /
    • 2016
  • Purpose: The purpose of this study is to examine the effects of sensorimotor training on knee joint stability after anterior cruciate ligament reconstruction. Methods: The subjects were sixteen 16 adults who received anterior cruciate reconstruction by arthroscopy, and underwent sensorimotor training for which was to have them maintenanceain of a standing position with a step Balance ball on the affected side over 30 degrees knee flexion with 100% weight bearing for 15-20 seconds. Before the genuine experiment commenced, the Lysholm scale was had been used to assess functional disorders on the affected knee joint. KT-2000 Arthrometer measurement equipment was used to measure anterior displacement of tibia against to femur before and after the sensorimotor training. Results: There was significant relaxation on the affected side in tibia anterior displacement of the affected and sound sides on in supine position before the sensorimotor training. There was little significant difference in tibia anterior displacement of the affected knee joints on in the supine position before and after the sensorimotor training. The results also showed that there was a reduction in the difference of tibia anterior displacement of the affected knee joints on in the standing position. These results suggest that the effects of sensorimotor training on knee joint stability after anterior cruciate ligament reconstruction is to induce the change of tibia anterior displacement against femur and the variation of muscles activation. Conclusion: The sensorimotor training may contribute to the improvement of joint functional stability in people who are in post-operation state and with orthopedic musculoskelectal injuries.

Effects of Warm Needling on the Acute Knee Arthritis Induced by Carrageenan in Rats (흰쥐에서 carrageenan 유발 급성(急性) 슬관절염(膝關節炎)에 대한 혈위별(穴位別) 온침자극(溫鍼刺戟)의 효과(效果))

  • Jang, Jae-Young;Kwon, Oh-Sang;Kim, Young-Sun;Kim, Jae-Hyo;Kim, Yu-Ri;Ahn, Seoung-Hoon;Sohn, In-Chul
    • Korean Journal of Acupuncture
    • /
    • v.26 no.2
    • /
    • pp.75-89
    • /
    • 2009
  • Objectives: Warm needling combines simultaneously the effects of acupuncture and moxibustion. This study was to investigate whether warm needling could relieve acute knee arthritis induced by carrageenan in rats. Methods: To illuminate the underlying mechanisms of the warm needling-induced antinociception, weight bearing force (WBF) was observed on the acute knee arthritic rat model. Under general anesthesia, ST36, SP9, Hakjung extra point, LI4 were punctured and stimulated with 30 mg moxa ball combustion on top of the needle (${\emptyset}0.18{\times}8mm$). Results: In behavioral test, rats subsequently showed a reduced stepping force of the affected limb 3 hours after the induction of arthritis. Warm needling on the contralateral or ipsilateral ST36 failed to show antinociceptive effect on the acute knee arthritis. Warm needling on the contralateral SP9 or LI4 increased WBF values to normal level in the acute stage of the arthritis. Warm needling on the Hakjung extra-point resulted in the significant antinociceptive effects through acute stage. These effects of warm needling were suppressed by opioids receptor antagonist naltrexone (10 mg/kg, i.p.) and alpha adrenoceptor antagonist phentolamine (5 mg/kg, i.p.). Conclusion: The data suggest that warm needling-induced antinociception is differently mediated by acupoints and accomplished by activating the descending inhibitory systems including endogenous opioids and $\alpha$-adrenoceptors.

  • PDF

A Study on Friction and Wear Properties of Tetrahedral Amorphous Carbon Coatings on Various Counterpart Materials

  • Lim, Min Szan;Jang, Young-Jun;Kim, Jong-Kuk;Kim, Jong-Hyoung;Kim, Seock-Sam
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.241-246
    • /
    • 2018
  • This research addresses the improvement of tribo-systems, specifically regarding the reduction of friction and wear through tribo-coupling between tetrahedral amorphous carbon (ta-C) with different types of counterpart materials, namely bearing steel (SUJ2), tungsten carbide (WC), stainless steel (SUS304), and alumina ($Al_2O_3$). A second variable in this project is the utilization of different values of duct bias voltage in the deposition of the ta-C coating - 0, 5, 10, 15, and 20 V. The results of this research are expected to determine the optimum duct bias and best counter materials associated with ta-C to produce the lowest friction and wear. Results obtained reveal that the tribo-couple between the ta-C coating and SUJ2 balls produces the lowest friction coefficient and wear rate. In terms of duct bias changes, deposition using 5 V produces the most optimum tribological behavior with lowest friction and wear on the tribo-system. In contrast, the tribo-couple between ta-C with a WC ball causes penetration through the coating surface layer and hence high surface delamination. This study demonstrates that the most effective ta-C coating duct bias is 5 V associated with SUJ2 counter material to produce the lowest friction and wear.