• 제목/요약/키워드: balancing control

검색결과 636건 처리시간 0.022초

Effect of Heel Raise Exercise with NMES on Peroneus Longus Muscle Strength and Postural Control Ability in Subjects with Functional Ankle Instability: Randomized Controlled Trial

  • Seo, Joon Ho;Lee, Jeon-Hyeong;Lee, Mi Young
    • The Journal of Korean Physical Therapy
    • /
    • 제33권1호
    • /
    • pp.28-33
    • /
    • 2021
  • Purpose: This study examined the effects of heel raise exercises combined with neuromuscular electrical stimulation (NMES) on the muscle strength and postural control ability of subjects with functional ankle instability (FAI). Methods: Twenty-two subjects with FAI participated in this study. They were assigned randomly to two groups: 11 each in the NMES and the sham-NMES groups. Heel raise exercise was applied, and NMES electrodes were attached to the peroneus longus muscles. The NMES group applied NMES during the heel raise exercise. NMES was applied for 20 minutes during the heel raise exercise. The heel raise exercise was performed four times a week for five weeks. The muscle strength and balance error scoring system (BESS) were measured before and after the intervention. Results: A comparison of before and after the intervention within the groups revealed improved muscle strength in the NMES and Sham-NMES groups, but the BESS was improved under all conditions only in the NMES group. The Sham-NMES group showed no improvement in the unstable support surface. Furthermore, when comparing the amount of change before and after the intervention between the groups, there were significant differences in the total score and unstable support in the BESS and muscle strength. Conclusion: NMES had a positive effect on the functional activities of the functional ankle instability subjects, such as balancing on an unstable support surface during postural control and increasing muscle strength.

Current Sharing Method Based on Optimal Phase Shift Control for Interleaved Three-Phase Half Bridge LLC Converter with Floating Y-Connection

  • Shi, Lin;Liu, Bangyin;Duan, Shanxu
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.934-943
    • /
    • 2019
  • A current balance problem exists in multi-phase LLC converters due to the resonant parameter tolerance. This paper presents a current balancing method for interleaved three-phase half bridge LLC converters. This method regulates the phase shift angle of the driving signals between the three phases based on a converter with a floating Y-connection. The floating midpoint voltage has different influences on each phase current and makes the three-phase current balance performance better than midpoint non-floating systems. Phase shift control between modules can further regulate the midpoint voltage. Then three phase current sharing is realized without adding extra components. The current distributions in a midpoint non-floating system and a midpoint floating system are compared. Then the principle and implementation of the proposed control strategy are analyzed in detail. A 3kW prototype is built to verify the validity and feasibility of the proposed method.

Deadbeat and Hierarchical Predictive Control with Space-Vector Modulation for Three-Phase Five-Level Nested Neutral Point Piloted Converters

  • Li, Junjie;Chang, Xiangyu;Yang, Dirui;Liu, Yunlong;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1791-1804
    • /
    • 2018
  • To achieve a fast dynamic response and to solve the multi-objective control problems of the output currents, capacitor voltages and system constraints, this paper proposes a deadbeat and hierarchical predictive control with space-vector modulation (DB-HPC-SVM) for five-level nested neutral point piloted (NNPP) converters. First, deadbeat control (DBC) is adopted to track the reference currents by calculating the deadbeat reference voltage vector (DB-RVV). After that, all of the candidate switching sequences that synthesize the DB-RVV are obtained by using the fast SVM principle. Furthermore, according to the redundancies of the switch combination and switching sequence, a hierarchical model predictive control (MPC) is presented to select the optimal switch combination (OSC) and optimal switching sequence (OSS). The proposed DB-HPC-SVM maintains the advantages of DBC and SVM, such as fast dynamic response, zero steady-state error and fixed switching frequency, and combines the characteristics of MPC, such as multi-objective control and simple inclusion of constraints. Finally, comparative simulation and experimental results of a five-level NNPP converter verify the correctness of the proposed DB-HPC-SVM.

Development of advanced walking assist system employing stiffness sensor

  • Kim, Seok-Hwan;Shunji, Moromugi;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1638-1641
    • /
    • 2004
  • Many walking stands, and assisting tools have been developed for the people with low-limb disability to prevent diseases from bedridden state and to help them walk again. But many of those equipments require user to have some physical strength or balancing ability. In our last research, we developed walking assist system for the people with lower-limb disability. With the system, user can be assisted by actuators, and do not have to worry about falling down. The system adapted the unique closed links structure with four servomotors, three PICs as controller, and four limit switches as HMI (human man interface). We confirmed the adaptability of the system by the experiment. In this research, Muscle Stiffness Sensor was tested as the advanced HMI for walking assist system, and confirmed the adaptability by the experiment. As Muscle Stiffness Sensor can attain the muscle activity, user can interface with any device he want to control. Experimental result with Muscle Stiffness sonsor showed that user could easily control the walking assist system as his will, just by changing his muscle strength.

  • PDF

이족로봇의 선형모델결정과 제어에 관한 연구 (A Study on the Determination of Linear Model and Linear Control of Biped Robot)

  • 박인규;김진걸
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 추계학술대회 논문집 학회본부 D
    • /
    • pp.765-768
    • /
    • 2000
  • Linearization of the biped dynamic equations and design of linear controller for the linearized equations are studied in this paper. The biped robot with inverted pendulum type trunk, used to stabilize the dynamic balancing of the biped robot during dynamic walking period, is modelled with 14 DOF and simulated. Despite of well defined linear control theories so far, the linear control methods was limited to the applications for a walking robot, because they have been inherently strong nonlinear properties, such as a modeling parameter uncertainties, external forces as noise, inertial and Coriolis terms by three dimensional modeling and so on. To linearize the nonlinear equations of motion of biped robot on MIMO and time varying linear equations of motion, 1st order Taylor series is used to formulate the linear equation. And a 2nd order numerical perturbation method Is used to approximate partial differential equations. Using the linearized equations of motion, a linear controller is designed by pole placement method with feed forward compensation. Using the obtained linearized equations and linear controller, the continuous walking simulation is performed.

  • PDF

Control and Analysis of Vienna Rectifier Used as the Generator-Side Converter of PMSG-based Wind Power Generation Systems

  • Zhao, Hongyan;Zheng, Trillion Q.;Li, Yan;Du, Jifei;Shi, Pu
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.212-221
    • /
    • 2017
  • Permanent-Magnet Synchronous Generators (PMSGs) are used widely in Wind Power Generation Systems (WPGSs), and the Vienna rectifier was recently proposed to be used as the generator-side converter to rectify the AC output voltage in PMSG-based WPGS. Compared to conventional six-switch two-level PWM (2L-PWM) converters, the Vienna rectifier has several advantages, such as higher efficiency, improved total harmonic distortion, etc. The motivation behind this paper is to verify the performance of direct-driven PMSG wind turbine system based-Vienna rectifier by using a simulated direct-driven PMSG WPGS. In addition, for the purpose of reducing the reactive power loss of PMSGs, this paper proposes an induced voltage sensing scheme which can make the stator current maintain accurate synchronization with the induced voltage. Meanwhile, considering the Neutral-Point Voltage (NPV) variation in the DC-side of the Vienna rectifier, a NPV balancing control strategy is added to the control system. In addition, both the effectiveness of the proposed method and the performance of the direct-driven PMSG based-Vienna rectifier are verified by simulation and experimental results.

분산 시스템에서 동적 파일 이전과 수학적 모델 (Dynamic File Migration And Mathematical model in Distributed Computer Systems)

  • 문원식
    • 디지털산업정보학회논문지
    • /
    • 제10권3호
    • /
    • pp.35-40
    • /
    • 2014
  • Many researches have been conducted to achieve improvement in distributed system that connects multiple computer systems via communication lines. Among others, the load balancing and file migration are considered to have significant impact on the performance of distributed system. The dynamic file migration algorithm common in distributed processing system involved complex calculations of decision function necessary for file migration and required migration of control messages for the performance of decision function. However, the performance of this decision function puts significant computational strain on computer. As one single network is shared by all computers, more computers connected to network means migration of more control messages from file migration, causing the network to trigger bottleneck in distributed processing system. Therefore, it has become imperative to carry out the research that aims to reduce the number of control messages that will be migrated. In this study, the learning automata was used for file migration which would requires only the file reference-related information to determine whether file migration has been made or determine the time and site of file migration, depending on the file conditions, thus reflecting the status of current system well and eliminating the message transfer and additional calculation overhead for file migration. Moreover, mathematical model for file migration was described in order to verify the proposed model. The results from mathematical model and simulation model suggest that the proposed model is well-suited to the distributed system.

근사레벨제어로 동작하는 중전압 모듈형 멀티레벨 컨버터의 개선된 전압변조기법 (Improved Modulation Scheme for Medium Voltage Modular Multi-level Converter Operated in Nearest Level Control)

  • 김도현;김재혁;한병문
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.285-296
    • /
    • 2017
  • This paper proposes an improved modulation scheme for the medium voltage modular multi-level converter (MMC), which operates in the nearest level control and applies in the medium voltage direct current (MVDC) system. In the proposed modulation scheme, the offset (neutral-to-zero output) voltage is adjusted, with the phase voltage magnitude, thereby maintaining a constant value with N+1 level in the controllable modulation index (MI) range. In order to confirm the proposed scheme's validity, computer simulations for the 22.9 kV - 25 MVA MMC were performed with PSCAD/EMTDC, as well as hardware experiments for the 380 V - 10 kVA MMC. The proposed modulation scheme offers to build a constant pole voltage regardless of the MI value, and to build a phase voltage with improved total harmonic distortion (THD).

양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구 (A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid)

  • 윤혁진;김명호;백주원;김주용;김희제
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

The Influence of Vestibular Stimulation Training on Static Balance during Standing in Healthy Young Adults

  • Cho, Hwa-Young;Choi, Su-Hee;Seo, Sam-Ki
    • The Journal of Korean Physical Therapy
    • /
    • 제23권6호
    • /
    • pp.71-76
    • /
    • 2011
  • Purpose: We investigated a better method to enhance the vestibular system including balancing by comparing the vestibular stimulation exercise (VSE) and galvanic vestibular stimulation (GVS). Methods: The study was performed with 40 subjects randomized into four groups, including a control group, a VSE group, a GVS group, and a VSE with GVS group. The subjects of VSE performed a forward and backward roll, a right side and left side roll, and an equilibrium board in vestibular stimulation training. GVS was applied for 10 minutes and the cathode and anode side were then changed and GVS was then applied for the remaining 10 minutes. GVS was applied for 20 minutes to the subjects of this group after completion of the VSE program. Results: In the control group, all conditions were significantly decreased (p<0.05) compared to the VSE with GVS group. Also, the center of pressure (CoP) surface was more significantly decreased (p<0.01) and the CoP speed was significantly decreased in the one legged stance (p<0.05) in the control group compared to the GVS group. Conclusion: These findings suggested that GVS training increases balance ability in a narrow width. VSE with GVS training is therefore recommend as the superior method. Using GVS or VSE with GVS training is considered to clinically improve balance ability by stimulating the vestibular system.