• Title/Summary/Keyword: balancing control

Search Result 636, Processing Time 0.026 seconds

Control of Seesaw balancing using decision boundary based on classification method

  • Uurtsaikh, Luvsansambuu;Tengis, Tserendondog;Batmunkh, Amar
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.11-18
    • /
    • 2019
  • One of the key objectives of control systems is to maintain a system in a specific stable state. To achieve this goal, a variety of control techniques can be used and it is often uses a feedback control method. As known this kind of control methods requires mathematical model of the system. This article presents seesaw unstable system with two propellers which are controlled without use of a mathematical model instead. The goal was to control it using training data. For system control we use a logistic regression technique which is one of machine learning method. We tested our controller on the real model created in our laboratory and the experimental results show that instability of the seesaw system can be fixed at a given angle using the decision boundary estimated from the classification method. The results show that this control method for structural equilibrium can be used with relatively more accuracy of the decision boundary.

Coordinated Simultaneous Attitude Pointing for Multiple Satellites Under Formation Flying

  • Choi, Yoon-Hyuk;Lee, Henzeh;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.129-139
    • /
    • 2007
  • In this paper, attitude control laws for simultaneous pointing of multiple spacecrafts are considered under a formation flying scenario. The basic approach lies in adaptive feedback gains using relative attitude information or maneuver time approximation for coordinated attitude control. Each control law is targeted to balancing mean motion or to correcting system response to the slowest satellite. The control gain adaptation is constructed by two approaches. The first one is using variable damping gain to manipulate speed of a fast system response, and the second one uses alternate natural frequency of the system under control. The validity and stability of the proposed approaches are examined analytically and tested through numerical simulations.

The Optimum SIR-Based Downlink Power Control for HAP W-CDMA (HAP W-CDMA 시스템을 위한 SIR 기반의 최적 다운링크 전력 제어)

  • Kang, Young-Heung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.6A
    • /
    • pp.642-647
    • /
    • 2007
  • HAP(High Altitude Platform) systems have been proposed due to their unique advantages over terrestrial and satellite systems as the alternative wireless communication system to deliver the third generation IMT-2000 wireless services. It has been required to study for the power control in W-CDMA HAP system as well as the terrestrial mobile system in order to mitigate interference and increase the capacity. In this paper, a new power control has been proposed for HAP system considering the interference profile into the DB(distributed balancing) SIR(signal to interference ratio)-based algorithm which has been considered in terrestrial system, and estimated by the outage performance of the proposed DB algorithm is better remarkably than DBPA(distance-based power allocation) which is proposed for HAP system, and it is the same regardless of the antenna maximum gain and its sidelobe characteristics.

Motion Control of 3D Human Character Using Motion Database (운동관절 데이터베이스를 이용한 3차원 인체모형의 동작제어)

  • 김시중;국태용
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.04a
    • /
    • pp.262-267
    • /
    • 1998
  • A hierarchical motion control system for animation of 3D human character is implemented using the motion database in realtime. The proposed motion control system consists of coordination controller for gait timing and balancing of walking motion, joint servo controller for realistic limb movement, and motion database for goal-directed character animation which makes time-consuming animation relatively easy task. As one example among the various applications of the proposed motion control system. We present a simple virtual reality system in which the motion control system plays a central role in generating realistic motion of virtual human character.

  • PDF

High Performance Control of LED Drive System for LCD Backlight (LCD 백라이트를 위한 LED 드라이브 시스템의 고성능 제어)

  • Ko, Jae-Sub;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.8-17
    • /
    • 2012
  • This paper proposes high performance control of light emitting diode(LED) drive system for liquid crystal display(LCD) backlight. The CCFL(cold cathode fluorescent lamp)was used to a conventional LCD backlight. Due to improvement on luminous efficiency, long life and wide color gamut, LED has gradually substituted for CCFL as backlight. The backlight using LED is necessary to use many LED. For that reason, the LED backlight is using a lot of LED driving circuits. The many LED driving circuit is generated a current deviation between LED. Eventually, it is caused brightness deviation between LED. Therefore, this paper improves the current deviation using transformer and balancing capacitor to solve this problem. Also, for accurate and uniform brightness control, this paper is applied the artificial intelligent control to a dimming control. This paper is compared with conventional system, and validity of this paper proves through that result.

Travel Control of a Spherical Wheeled Robot (Ball-Bot) with Mecanum Wheel (메카넘휠을 적용한 구형바퀴로봇(볼-봇)의 주행제어)

  • Seo, Beomseok;Park, Jong-Eun;Park, Jee-Seol;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.713-717
    • /
    • 2014
  • In this paper, the travel control of the spherical wheeled robot with a mecanum wheel is impelemented. Four typical wheels or three omni wheels are used to consist of the ball-bot. the slip is occured when the typical wheels is used to the ball-bot. In order to reduce these slip, the spherical wheeled robot with macanum wheels is proposed. Through some experiments, we find that the proposed spherical wheeled robot with a mecanum wheel is superior to the conventional spherical wheeled robot with typical wheels.

The Compliance Control for Walking Stabilization of a Jointed-Leg Quadrupedal Robot (관절 구동형 4족보행 로봇의 보행 안정화를 위한 컴플라이언스 제어)

  • Lee, Su-Yeong;Hong, Ye-Seon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1155-1165
    • /
    • 2000
  • Due to the irregularity of walking ground and the inaccuracy in trajectory control of a leg, the mechanical shock and slip on the ground can be caused in the landing and supporting legs of a walkin g robot, and the robot may lose walking stability. Especially in a jointed-leg type walking robot, those problems are much more severe than in the pantograph type since the leg-weight of the jointed-leg type walking robot is relatively heavier than that of the pantograph type in general. In order to secure the walking stability for the jointed-leg type quadrupedal robot under development in KIST(Korea Institute of Science and Technology), a balancing algorithm consisting of the leg compliance control and the body posture control is implemented in this paper, and the effectiveness of the algorithm is verified through experiments.

Fuzzy Learning Control for Ball & Beam System (볼과 빔 시스템의 퍼지 학습 제어)

  • Joo, Hae-Ho;Jung, Byung-Mook;Lee, Jae-Won;Lee, Hwa-Jo;Lee, Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.439-443
    • /
    • 1996
  • A fuzzy teaming controller is experimentally designed to control the ball k beam system in this paper. Although most fuzzy controllers have been built just to emulate human decision-making behavior, it is necessary to construct the rule bases by using a learning method with self-improvement when it is difficult or impossible to get them only by expert's experience. The algorithm introduces a reference model to generate a desired output and minimizes a performance index function based on the error and error-rate using the gradient-decent method. In our balancing experiment of the ball & beam system, this paper shows that the fuzzy control rules by learning are superior to the expert's experience.

  • PDF

Design of Fuzzy logic Controller and Its Application to Inverted Pendulum (퍼지 논리 제어기 설계와 도립 진자에의 적용)

  • Bang, Sung-Yun;Ko, Jae-Ho;Ryu, Chong-Won;Bae, Young-Chul;Yim, Hwa-Yeoung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.539-541
    • /
    • 1997
  • Fuzzy controller design consists of intuition, and any other information about how to control system, into a set of rules. These rules can then be applied to the system. If the rules adequately control the system, the design work is done well. If the rules are inadequate, the designer must modify the rules. Through this procedure, the system can be controlled. In this paper, we design fuzzy controller composed of two parts, one is balancing controller, the other is angle controller.

  • PDF

Control of Single Propeller Pendulum with Supervised Machine Learning Algorithm

  • Tengis, Tserendondog;Batmunkh, Amar
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.15-22
    • /
    • 2018
  • Nowadays multiple control methods are used in robot control systems. A model, predictor or error estimator is often used as feedback controller to control a robot. While robots have become more and more intensive with algorithms capable to acquiring independent knowledge from raw data. This paper represents experimental results of real time machine learning control that does not require explicit knowledge about the plant. The controller can be applied on a broad range of tasks with different dynamic characteristics. We tested our controller on the balancing problem of a single propeller pendulum. Experimental results show that the use of a supervised machine learning algorithm in a single propeller pendulum allows the stable swing of a given angle.