• 제목/요약/키워드: balanced canopy clustering

검색결과 1건 처리시간 0.015초

Balanced Canopy Clustering에 기반한 일반적 k-인접 이웃 그래프 생성 알고리즘 (A Generic Algorithm for k-Nearest Neighbor Graph Construction Based on Balanced Canopy Clustering)

  • 박영기;황혜수;이상구
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권4호
    • /
    • pp.327-332
    • /
    • 2015
  • k-인접 이웃 그래프는 모든 정점에 대한 k-NN 정보를 나타내는 데이터 구조로서, 많은 정보검색 및 추천 시스템에서 k-인접 이웃 그래프를 활용하고 있다. 현재까지 k-인접 이웃 그래프를 생성하는 다양한 방법들이 제안되었지만, 다음의 두 조건을 동시에 만족하는 알고리즘은 제안되지 못했다: (1) 특정유사도 척도를 가정하지 않는다. (2) 정점 또는 차원의 수가 증가하더라도 정확도가 감소하지 않는다. 본 논문에서는 balanced canopy clustering을 이용하여 위 두 조건을 모두 만족하는 k-NN 그래프 생성 알고리즘을 제안한다. 실험 결과, 정점과 차원의 수에 상관없이 기본 알고리즘에 비해 5배 이상 빠르면서 약 92%의 정확도를 유지했다. 본 알고리즘은 새로운 유사도 척도를 사용하거나, 높은 정확도를 보장해야 할 경우 효과적으로 사용될 수 있다.