• Title/Summary/Keyword: balance abilities

Search Result 153, Processing Time 0.025 seconds

Minimal Clinically Important Difference of Berg Balance Scale scores in people with acute stroke

  • Song, Min-Jeong;Lee, Jae-Hyoung;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.3
    • /
    • pp.102-108
    • /
    • 2018
  • Objective: To investigate whether the Minimal Clinically Important Difference (MCID) clinically defines improvement of Berg Balance Scale (BBS) scores in people with acute stroke in response to rehabilitation. Design: Retrospective study. Methods: Seventy-three participants with acute stroke participated in the study. Balance evaluation was performed using the BBS. All patients received rehabilitation with physical therapy for 4 weeks, 5 times a week, for 2 hours and 20 minutes a day. An anchor-based approach using the clinical global impression was used to determine the MCID of the BBS. The MCID was used to define the minimum change in the BBS total score (postintervention-preintervention) that was needed to perceive at least a 3-point improvement on the global rating of change. Receiver operating characteristic (ROC) curves was used to define the cut-off values of the optimal MCID of the BBS in order to discriminate between improvement and no improvement groups. Results: The optimal MCID cut-off point for the BBS change scores was 12.5 points for males with a sensitivity (Sn) of 0.62 and a specificity (Sp) of 0.89, and 12.5 points for females with a Sn of 0.69 and Sp of 0.85. The area under the curve of the ROC curve for all participants were 0.84 (95% confidence interval [CI], 0.72; 0.95, p<0.001), and 0.89 (95% CI, 0.77; 1.00, p<0.001), respectively. Conclusions: The MCID for improvement in balance as measured by the BBS was 13.5 points, indicating that the MCID does clinically detect changes in balance abilities in persons with stroke.

Effect of Partial Weight Supported Treadmill Training on Balance, Dysfunction and Pain in Patients With Chronic Low Back Pain (부분적 체중부하를 통한 트레드밀 훈련이 만성요통환자의 균형능력과 기능장애, 통증에 미치는 영향)

  • Kim, Dae-hyun;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Background: Patients with chronic low back pain (CLBP) functionally adapt to decreased postural control due to impaired processing of sensory information. Standing postural control has been the focus of recent research in CLBP. Change in postural control may be a risk factor for CLBP, although available studies are not conclusive. Objects: This study aimed to identify the role of partial weight supported treadmill training (PWSTT) in improving balance, dysfunction, and pain in patients with chronic low back pain. Methods: The study included 22 patients with CLBP. Patients in the control group ($n_1=8$) performed three 20 min stabilization exercise sessions per week, for 4 weeks. Patients in the full weight treadmill training group ($n_2=7$) performed treadmill training for 30 min after stabilization exercise. Patients in the PWSTT group ($n_3=7$) performed PWSTT with 20% of their body weight unloaded after stabilization exercises. By using the Biodex balance system, the dynamic balance abilities of the patients in the three groups were assessed in the quiet standing position under combined conditions of visual feedback (eyes open and closed) and platform stability (level 8). The Korean version of the Oswestry Disability Index and visual analogue scale score were used as the main measure. Results: The results of this study showed that dysfunction and pain were significantly improved in all groups. Although dynamic postural stability with eyes closed was significantly improved only in the PWSTT group (p<.05), no significant difference was found in the other groups. Conclusion: The results of this study indicate that PWSTT improved balance, dysfunction and pain in the patients with CLBP. Thus, this intervention is necessary for patients with CLBP with decreased postural control.

Effect of Hip Joint Mobilization on Hip Mobility, Balance and Gait With Stroke Patients (고관절 관절가동기법이 뇌졸중 환자의 고관절 가동성, 균형과 보행능력에 미치는 효과)

  • Kim, Young-Hoon;Jang, Hyun-Jeong;Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.21 no.2
    • /
    • pp.8-17
    • /
    • 2014
  • The purpose of this study was to examine the effects of hip joint mobilization (HJM) on walking ability, balance ability, and the joint range of motion in stroke patients to minimize the problems of the musculoskeletal system in patients with central nervous system diseases. All volunteers were randomly assigned to the HJM group ($n_1=14$) and the general neurodevelopment therapy (NDT) group ($n_2=16$). The HJM procedure involved applying Maitland mobilization techniques (distraction, lateral gliding, inferior gliding, and anterior gliding) by grade 3 to both hip joint. The mobilization process included mobilization and NDT for 15 min/day, 3 days a week for 4 weeks. The outcome measures were evaluated, including the hip joint passive range of motion (ROM) test and femur head anterior glide test (FHAG) using prone figure four test, dynamic and static balance abilities [timed up and go (TUG) test and center of pressure (COP) analysis], and walking ability [10-meter walking test (10MWT) and 6-min walking test (6MWT)]. Both the groups showed significant post-training differences in the hip joint ROM (FHAG and degree of hip extension) and 10MWT. The post-training improvements in the TUG test were significantly greater in patients of the HJM group than in the NDT group; however, there were no post-training improvements in COP in both groups. Patients in the HJM group showed post-training improvement in the 6MWT; however, statistically significant differences were not observed. Patients in the NDT group showed post-training improvements in the 6MWT. These results suggest that HJM improves hip joint ROM, dynamic balance ability, and walking speed in stroke patients. However, further studies are required to evaluate the long-term therapeutic efficacy of HJM in stroke patients.

The Influence of Clinical Symptoms and Self-Efficacy on Function in Women With Osteoarthritis (골관절염 여성의 임상적 특성 및 자기효능감이 기능수행에 미치는 영향)

  • Jung, Kyong-Ah;Lee, Wan-Hee
    • Physical Therapy Korea
    • /
    • v.14 no.1
    • /
    • pp.55-63
    • /
    • 2007
  • This study was designed to examine the relationship between clinical symptoms, self-efficacy, and performance of women with osteoarthritis. It is a survey study of 60 women who were diagnosed as osteoarthritis and given medical treatments from September, 2005 to October, 2005 in hospital 'H' located in Yongin-si. For clinical symptoms, radiographs of the subjects' knees were taken and evaluated the pathology grade by the Kellgren-Lawrence grade. Pain and stiffness was measured by the measure of WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index), and functional reach test was measured in order to examine balancing abilities. Self-efficacy was measured by a tool which has revised the ASES (Arthritis Self-Efficacy Scale), and performance was measured by recording the difficulty of the WOMAC measurements themselves, and the time taken for 20 m walking, going up and down 9 stairs, and 5 sit-down and stand-up repetitions. The resulting differences in the other variables according to performance and the relationship between performance with variables are the following. First, an increase in pain in women with osteoarthritis led to decreased functional ability. Second, an increase in stiffness in women with osteoarthritis led to a decrease in functional ability. Third, a decrease in balance in women with osteoarthritis led to a decrease in functional ability. Fourth, a decrease in self-efficacy in women with osteoarthritis led to a decrease in functional ability. Fifth, the variables for estimating the performance by self-report were pain and self-efficacy. The variables for estimating the performance by recording the time taken was balance and self-efficacy. As a result factors such as pain, balance and self-efficacy in women with osteoarthritis were closely related to performance. Based on the results, it seems that physical therapy programs to decrease pain and to increase the balance in women with osteoarthritis, and psychological approaches to increasing self-efficacy are needed. I hope that the results of this study will be useful data for clinical management and intervention for women with osteoarthritis.

  • PDF

Design a Platform for Balancing Mutual Values between Objects (객체들 간의 상호 가치 균형을 위한 플랫폼 설계)

  • Kim, Bong-Han
    • Journal of Digital Convergence
    • /
    • v.15 no.9
    • /
    • pp.241-248
    • /
    • 2017
  • There are various problems in the process of developing the game. Especially, there is a lot of problems in testing the balance of the value of each object. This causes problems such as an increase in development cost and a delay in development time. Therefore, if there is a tool or simulator that can test the mutual value balance of each object in advance, this problem can be solved. However, currently there are few simulators, tools, and platforms that can analyze and evaluate the mutual value balance between these objects. In this paper, I designed a platform to evaluate and test the mutual value balance between these objects based on mock battle. The designed platform tests and evaluates the abilities of each object according to their attack and defense strengths. So, this reduces development costs and shortens development time.

Predictive analyses for balance and gait based on trunk performance using clinical scales in persons with stroke

  • Woo, Youngkeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.7 no.1
    • /
    • pp.29-34
    • /
    • 2018
  • Objective: This study aimed to predict balance and gait abilities with the Trunk Impairment scales (TIS) in persons with stroke. Design: Cross-sectional study. Methods: Sixty-eight participants with stoke were assessed with the TIS, Berg Balance scale (BBS), and Functional Gait Assessment (FGA) by a therapist. To describe of general characteristics, we used descriptive and frequency analyses, and the TIS was used as a predictive variable to determine the BBS. In the simple regression analysis, the TIS was used as a predictive variable for the BBS and FGA, and the TIS and BBS were used as predictive variables to determine the FGA in multiple regression analysis. Results: In the group with a BBS score of >45 for regression equation for predicting BBS score using TIS score, the coefficient of determination ($R^2$) was 0.234, and the $R^2$ was 0.500 in the group with a BBS score of ${\leq}45$. In the group with an FGA score >15 for regression equation for predicting FGA score using TIS score, the $R^2$ was 0.193, and regression equation for predicting FGA score using TIS score, the $R^2$ was 0.181 in the group of FGA score ${\leq}15$. In the group of FGA score >15 for regression equation for predicting FGA score using TIS and BBS score, the $R^2$ was 0.327. In the group of FGA score ${\leq}15$ for regression equation for predicting FGA score using TIS and BBS score, the $R^2$ was 0.316. Conclusions: The TIS scores are insufficient in predicting the FGA and BBS scores in those with higher balance ability, and the BBS and TIS could be used for predicting variables for FGA. However, TIS is a strong predictive variable for persons with stroke who have poor balance ability.

Effect of Whole Body Horizontal Vibration Exercise in Chronic Low Back Pain Patients: Vertical Versus Horizontal Vibration Exercise

  • Kim, Heejae;Kwon, Bum Sun;Park, Jin-Woo;Lee, Hojun;Nam, Kiyeun;Park, Taejune;Cho, Yongjin;Kim, Taeyeon
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.804-813
    • /
    • 2018
  • Objective To elucidate the effect of a 12-week horizontal vibration exercise (HVE) in chronic low back pain (CLBP) patients as compared to vertical vibration exercise (VVE). Methods Twenty-eight CLBP patients were randomly assigned to either the HVE or VVE group. All participants performed the exercise for 30 minutes each day, three times a week, for a total of 12 weeks. Altered pain and functional ability were evaluated using the visual analog scale (VAS) and Oswestry Disability Index (ODI), respectively. Changes in lumbar muscle strength, transverse abdominis (TrA) and multifidus muscle thicknesses, and standing balance were measured using an isokinetic dynamometer, ultrasonography, and balance parameters, respectively. These assessments were evaluated prior to treatment, 6 weeks and 12 weeks after the first treatment, and 4 weeks after the end of treatment (that is, 16 weeks after the first treatment). Results According to the repeated-measures analysis of variance, there were significant improvements with time on VAS, ODI, standing balance score, lumbar flexor, and extensor muscle strength (all p<0.001 in both groups) without any significant changes in TrA (p=0.153 in HVE, p=0.561 in VVE group) or multifidus (p=0.737 in HVE, p=0.380 in VVE group) muscle thickness. Further, there were no significant differences between groups according to time in any of the assessments. No adverse events were noticed during treatment in either group. Conclusion HVE is as effective as VVE in reducing pain, strengthening the lumbar muscle, and improving the balance and functional abilities of CLBP patients. Vibrational exercise increases muscle strength without inducing muscle hypertrophy.

Effects of Muscle Energy Technique on Knee Extensor Muscle Strength, Knee Range of Motion, Balance, and Walking Ability in Elderly Women during the Chronic Phase after Total Knee Replacement (슬관절 전치환술 후 만성기 여성 노인의 슬관절 신전근에 근에너지기법이 근력, 관절가동범위, 균형, 보행능력에 미치는 영향)

  • Song, Hyoung-bong;Park, Gun-hong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.55-67
    • /
    • 2021
  • Background: This study aimed to use the muscle energy technique (MET) with total knee replacement (TKR) during the chronic phase in a clinical setting and confirm its effects on the knee extensor strength and ROM, balance, and walking ability. Methods: A total of 20 female patients who underwent TKR 1~4 years ago were assigned to two groups (Control: Q setting exercise+general physical therapy, n=10; Exp: MET+general physical therapy, n=10). Interventions were performed three times a week for 4 weeks. The strength of the knee extensor was evaluated using an aneroid sphygmomanometer, and ROM was evaluated using degrees at the end range on active knee flexion. The main balance outcomes were evaluated using two standard scale (TSS) and timed up and go (TUG) test, whereas the walking ability was evaluated using the 10 meter walk test (10MWT). Results: Analysis showed that both groups had significant increases in strength, ROM, TSS, TUG, and 10MWT. Differences in all variables were significant between the control and Exp groups at the post-intervention evaluation (p<.05). However, no significant difference was observed in strength and TUG. Conclusion: Results of this study demonstrated that MET would help improve the strength, ROM, balance, and walking ability of patients with chronic TKR who want to enhance their abilities and performance in activities of daily living.

The Influence of Augmented Reality based Knee Exercise in Short Period on Range of Motion and Balance - Pilot study (증강현실 기반의 단기간 무릎운동이 관절가동범위와 균형에 미치는 영향 - 예비연구)

  • Im, JongHun;Yu, JaeHo
    • Archives of Orthopedic and Sports Physical Therapy
    • /
    • v.14 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Purpose: This study investigated the effect of the augmented reality (AR)-based knee joint short period exercise program and used a motion analyzer with a 3D camera to determine the range of motion and dynamic balance and further investigate the effects of therapeutic exercise on patients. Methods: This study used AR-based motion analysis and a Y-balance test to measure the range of motion (ROM) of each joint: the hip joint and the knee joint. After the measurements, an exercise program was applied to the subjects, using the knee motion program function, and the muscles of the quadriceps femoris and the hamstring were stretched or strengthened. Results: Our results showed knee joint extension at the dominant hip joint flexion position. While there was no significant difference (p>.05) at this position, there were significant differences in the non-dominant hips, unbalanced knee joint flexion, and superior knee joint flexion (p<.05). The Y-balance test using the non-dominant leg supported by the dominant legs showed that the absolute reach was $69.70{\pm}7.06cm$ before the exercise, and the absolute reach after the exercise was $77.56{\pm}6.09cm$ (p<.05). Conclusions: There was a significant difference when the movement of the lower limbs supported the superior limbs, and a significant difference was found in the ROM when the non-dominant side supported the dominant side. Therefore, the AR-based exercise program improves the balance of the human body and the range of motion of the joints, and research that aims to improve patients abilities should continue.

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF