• 제목/요약/키워드: bake-hardenable(BH) steel

검색결과 3건 처리시간 0.017초

합금화 용융아연 도금강판의 강성분, 소둔 및 합금화 열처리가 소부경화성에 미치는 영향 (Effects of Steel Chemistry, Annealing and Galvannealing Conditions on Bake Hardenability of Hot-Dip Galvannealed Sheet Steels)

  • 이호종;김종상
    • 한국표면공학회지
    • /
    • 제34권3호
    • /
    • pp.247-257
    • /
    • 2001
  • In an effort to improve the dent resistance of exterior body panels at a reduced steel thickness, the bake hardenable steels added Ti or Nb with tensile strength of 35Kgf/$\textrm{mm}^2$ were investigated. The bake hardenability increased with the annealing temperature and solute carbon content. Bake hardening of 3 to 5Kgf/$\textrm{mm}^2$ was obtained in steels with a controlled solute carbon concentration range from 6 to 10ppm. The galvannealing temperature and time had little influence on the bake hardenability. The Fe-Zn alloying reaction of 35Kgf/$\textrm{mm}^2$ BH steel was remarkably retarded due to a 0.07%P addition. The optimum galvannealing temperatures of 35Kgf/$\textrm{mm}^2$ BH steel were ranged from 520 to 56$0^{\circ}C$ in view of the Fe content and powdering resistance. The cross-section and planar views of the galvannealed coatings to characterize morphology development were discussed.

  • PDF

석출강화형 극저탄소강의 특성에 대한 고찰 (Characteristics of Precipitation Hardened Extra Low Carbon Steels)

  • 윤정봉;김성일;김인배
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.609-616
    • /
    • 2008
  • Conventional bake-hardenable(BH) steels should be annealed at higher temperatures because of the addition of Ti or/and Nb which forms carbides and raises recrystallization start temperature. In this study, the development of new BH steels without Ti or Nb addition has been reviewed. The new BH steels have nearly same mechanical properties as the conventional BH steels even though it is annealed at lower temperature. The steels also show smaller deviation of the mechanical properties than that of the conventional BH steels because of the conarol of solute carbon content during steel making processes. The deviation of mechanical properties in conventional BH steels is directly dependent on the deviation of solute carbon which is greatly influenced by the amount of the carbide formers in conventional BH steels. Less alloy addition in the newly developed BH steels gives economical benefits. By taking the advantage of sulfur and/or nitrogen which scarenge in Interstitial-Free or conventional BH steels, fine manganese sulfides or nano size copper sulfides were designed to precipitate, and result in refined ferrite grains. Aluminum nitrides used as a precipitation hardening element in the developed steels were also and resull in fine and well dispersed. As a result, the developed steels with less production cost and reduced deviation of mechanical properties are under commercial production. Note that the developed BH steels are registered as a brand name of MAFE(R) and/or MAF-E(R).

Ti-Nb 복합 첨가강의 BH특성에 미치는 균열온도의 영향 (Effect of Soaking Temperature on the Bake Hardnability of Ti-Nb Stabilized Steel Sheets)

  • 허보영;엄용수;김상열;조상헌;남태운
    • 한국주조공학회지
    • /
    • 제24권4호
    • /
    • pp.231-237
    • /
    • 2004
  • Bake hardenable steel utilizes the phenomenon of strain aging to provide an increase in the yield strength of formed components. An increase of the carbon content will improve the bake hardening response: more solutes are available to pin mobile dislocations and to form the clusters more rapidly. But aging resistance decrease as increasing solute carbon. In order to under-stand the compatibility between bake hardenability and aging resistance. The optimum solute carbon control methods during manufacture should be determined. In this paper, the effect of continuous heat cycle conditions such as soaking temperature, rapid cooling start temperature, cooling rate on BH(Bake Hardenability), AI(Aging Index), YP-El(Yield Point Elongation) and other mechanical properties have been investigated. and following results were obtained. In the case of soaking temperature, BH increases with higher soaking temperature because of NbC $dissolution(830^{\circ}C)$, Therefore the solute carbon and BH at $850^{\circ}C$ and $870^{\circ}C$ are higher than these at $810^{\circ}C$. But BH at $870^{\circ}C$ is a little lower than that at $850^{\circ}C$ owing to the ferrite grain size. The measurement of amount of dissolution C using IFT(Internal Friction Test) can explain the relation of solute carbon and BH.