• Title/Summary/Keyword: bainitic steel

Search Result 57, Processing Time 0.017 seconds

The Study on the Microstructure and Mechanical Properties of the Nodular Indefinite Chilled Iron Containing Ni (Ni 함유 NICI(Nodular Indefinite Chilled Iron)의 미세조직과 기계적성질에 관한 연구)

  • Baek, Eung-Ryul;Oh, Seok-Jung;Villando, Thursdiyanto
    • Journal of Korea Foundry Society
    • /
    • v.26 no.4
    • /
    • pp.180-183
    • /
    • 2006
  • The effects of adding Ni on microstructure and mechanical properties of Nodular Indefinite Chilled Iron (NICI) were studied. Thermal fatigue, hardness, tensile properties, wear resistance, are very important factors for NICI used for hot working roll and wire rod mill. The results show that addition 4% nickel has changed pearlite to bainite. Bainite matrix is superior to pearlite matrix on wear resistance, hardness and strength and will increase performance lifetime of NICI conventional roll material. Based in the bainitic microstructure, hardness and tensile property increase up to 48 HRc and $72\;kg/mm^2$, respectively.

Effect of Strain Aging on Tensile Behavior and Properties of API X60, X70, and X80 Pipeline Steels

  • Lee, Sang-In;Lee, Seung-Yong;Lee, Seok Gyu;Jung, Hwan Gyo;Hwang, Byoungchul
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1221-1231
    • /
    • 2018
  • The effect of strain aging on tensile behavior and properties of API X60, X70, and X80 pipeline steels was investigated in this study. The API X60, X70, and X80 pipeline steels were fabricated by varying alloying elements and thermomechanical processing conditions. Although all the steels exhibited complex microstructure consisting of polygonal ferrite (PF), acicular ferrite, granular bainite (GB), bainitic ferrite (BF), and secondary phases, they had different fractions of microstructures depending on the alloying elements and thermomechanical processing conditions. The tensile test results revealed that yielding behavior steadily changed from continuous-type to discontinuous-type as aging temperature increases after 1% pre-strain. After pre-strain and thermal aging treatment in all the steels, the yield and tensile strengths, and yield ratio were increased, while the uniform elongation and work hardening exponent were decreased. In the case of the X80 steel, particularly, the decrease in uniform elongation was relatively small due to many mobile dislocations in PF, and the increase in yield ratio was the lowest because a large amount of harder microstructures such as GB, BF, and coarse secondary phases effectively enhanced work hardening.

Effect of Welding Parameters on Bead Shape, Microstructure and Hardness of Galvanized Steel Pipe Welds with GMAW (아연도금강관의 GMAW에서 용접변수가 비드형상과 미세조직과 경도에 미치는 영향)

  • Lim, Young-Min;Lee, Wan Kyu;Kim, Se-Cheol;Koh, Jin-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.535-541
    • /
    • 2013
  • The present study was carried out to investigate the effects of welding parameters such as current, voltage and shielding gases on the bead shape, microstructures and hardness. It was confirmed that bead height was lowered and bead depth was increased with increasing voltages while height, depth and width of beads increased with welding currents. The hardness of weld metals with Ar+10% $O_2$ and Ar+20% $CO_2$ was low due to the formation of grain boundary and polygonal ferrites while that of weld metals with Ar+2% $O_2$ was high due to the presence of acicular, bainitic and sideplate ferrites.

Effects of Microstructural States on Magnetic Barkhausen Noise Behavior in the Weld Heat-Affected Zone of Reactor Pressure Vessel Steel (원자로압력용기강 용접열영향부의 미세조직 변화가 Magnetic Barkhausen Noise 거동에 미치는 영향)

  • Kim, Joo-Hag;Yoon, Eui-Pak;Moon, Jong-Gul;Park, Duck-Gun;Hong, Jun-Hwa
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.292-303
    • /
    • 1998
  • Recent study has demonstrated that some magnetic properties are sensitive to the microstructural state of material. The ASTM A 508 Gr. 3 reactor pressure vessel steel has various microstructural changes including martensitic and bainitic phases, and various sizes of grain and precipitates in the weld heat-affected zone (HAZ). To correlate the microstructural state with Barkhausen noise (BN), specimens were prepared through simulating various weld thermal cycles using a thermal simulator. The conventional magnetic properties, i.e. coercive force, remanence and maximum induction, did not change significantly, whereas the BN amplitude and energy during a magnetization cycle changed markedly with microstructural state. The BN increased with increasing grain and carbide sizes, and the tempered bainite structure showed higher BN parameter than tempered martensite.

  • PDF

Effects of Microalloying Elements on Microstructures and Toughness of Simulated HAZ in Quenched and Tempered Steels

  • Chang, W.S.;Yoon, B.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • A series of experiments has been carried out to investigate the effect of titanium, boron and nitrogen on the microstructure and toughness of simulated heat affected zone (HAZ) in quenched and tempered (QT) type 490MPa yield strength steels. For acquiring the same strength level, the carbon content and carbon equivalent could be lowered remarkably with a small titanium and boron addition due to the hardenability effect of boron during quenching process. Following the thermal cycle of large heat input, the coarsened grain HAZ (CGHAZ) of conventional quenched and tempered (QT) type 490MPa yield strength steels exhibited a coarse bainitic or ferrite side plate structure with large prior austenite grains. While, titanium and boron bearing QT type 490MPa yield strength steels were characterized by the microstructure in the CGHAZ, consisting mainly of the fine intragranular ferrite microstructure. Toughness of the simulated HAZ was mainly controlled by the proper Ceq level, and the ratio of Ti/N rather than titanium and nitrogen contents themselves. In the titanium­boron added QT steels, the optimum Ti/N ratio for excellent HAZ toughness was around 2.0, which was much lower than the known Ti/N stoichiometric ratio, 3.4. With reducing Ti/N ratio from the stoichiometric ratio, austenite grain size in the coarse grained HAZ became finer, indicating that the effective fine precipitates could be sufficiently obtained even with lower Ti/N level by adding boron simultaneously. Along with typical titanium carbo­nitrides, various forms of complex titanium­ and boron­based precipitates, like TiN­MnS­BN, were often observed in the simulated CGHAZ, which may act as stable nuclei for ferrite during cooling of weld thermal cycles

  • PDF

Study on the Mechanical Properties of Mo Series High Speed Tool Steel Austempered (Mo계 고속도 공구강의 오스템퍼렁에 따른 기계적 성질에 관한 연구)

  • Choi, M.S.;Lee, H.W.;Rho, Y.S.;Kim, Y.H.;Kim, H.G.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • This study has been performed to find out the effect of austenitizing temperature, austempering temperature and its holding time, and tempering cycle on the mechanical properties such as impact resistance, hardness etc. of AISI $M_2$ Mo series high speed tool steel austempered or tempered after austempering treatment. The results obtained from the experiment are as follows ; (1) Optical micrograph has revealed that the transformation rate of bainite is delayed as the austenitizing temperature increases and that bainite is most apparently transformed at an austempering temperature of $290^{\circ}C$. (2) The amount of retained austenite during austempering has been analysed to be increased by the X-ray diffraction technique as the transformation product of bainite is increased. It has also been shown that the longer the holding time of austempering, the more the transformation quantity of bainite is formed, exhibiting, however, that the rate of bainitic transformation is considerably retarded after a certain period of holding time elapses. (3) Hardness measurement has shown that hardness values obtained after austempering increase with decreasing the amount of retained austenite. (4) The austempering and then tempering cycle has been formed to give hardness values which are more greatly improved as austenitizing temperature is increased. (5) The mechanical property of the specimen primary-tempered for 1 hour at $550^{\circ}C$ after austempering for 2 hours at $290^{\circ}C$ from the austenitizing temperature range of $1180^{\circ}C$ to $1210^{\circ}C$ have been estimated to be good values.

  • PDF

Effect of Heat Treatment on the Mechanical Properties of High Strengths Austempered Cast Steel (고강도 오세템퍼주강의 기계적성질에 미치는 열처리 영향)

  • Kang, C.Y.;Kim, H.J.;Kim, I.S.;Moon, W.J.;Lee, J.N.;Park, S.B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.333-341
    • /
    • 1998
  • The study was investigated on the effect of austenitizing and austempering conditions on retained austenite amount and carbon contents in retained austenite and simultaneously the effect of these variation on hardness, tensile and impact properties. A material of as-cast condition is composed of bull's eye structure with ferrite surrounding spheroidized graphite having about $5-10{\mu}m$ size and matrix structure of pearlite. Then, the contents of spheroidized graphite was about 5%. The retained austenite and carbon contents in the retained austenite were increased with the increasing of austenitizing and austempering temperatures, while the retained austenite showed the peak value and is decreased with increasing of austempering time. With increasing of austenitizing temperature, tensile strength, elongation and impact absorb energy increased and hardness was almost not changed, while with increasing of austempering temperature, tensile strength and hardness decreased, whereas elongation and impact absorb energy was increased. With increasing of retained austenite amount, the tensile strength is slowly decreased but elongation was increased with direct proportion. Also, Impact absorb energy is shown identity value untile about 18%, but rapidly increased above it. Elongation and Impact absorb energy are strongly controlled by the amount of retained austenite, but tensile strength is affected with various factors such as retained austenite amount and bainitic morphology.

  • PDF