• Title/Summary/Keyword: bagging

Search Result 199, Processing Time 0.024 seconds

A Study on the Evaluation of the properties change of Aircraft Composites Parts During Repair by Thermal Analysis Test (열분석시험을 통한 항공기 복합재료 부품의 수리 시 반복경화에 따른 물성변화 측정에 관한 연구)

  • 엄수현;이상언;한중원;김국진;김영식;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.33-37
    • /
    • 2002
  • Recently, composites have been widely applied in the sporting goods, automobile, aerospace industry. As the use of advanced composites increase, specific techniques have been developed to repair damaged composite structures. In order to repair the damaged part, it is required that the material in the damaged area be removed first by utilizing the proper method, and prepreg be laid up in the area and cured under vacuum using the vacuum bagging materials. In curing process, either in an oven or autoclave is to be delamination can be occurred in the sound areas during and/or after the exposure to the elevated curing temperature in case that the repair process is repeated. Therefore, this study was conducted to evaluate the degree of degradation of properties of the cured parts and how it affects to the delamination phenomenon between laminated skin and honeycomb core.

  • PDF

ExoTime: Temporal Information Extraction from Korean Texts Using Knowledge Base

  • Jeong, Young-Seob;Lim, Chae-Gyun;Choi, Ho-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.35-48
    • /
    • 2017
  • Extracting temporal information from documents is becoming more important, because it can be used to various applications such as Question-Answering (QA) systems, Recommendation systems, or Information Retrieval (IR) systems. Most previous studies only focus on English documents, and they are not applicable to the other languages due to the inherent characteristics of languages. In this paper, we propose a new system, named ExoTime, designed to extract temporal information from Korean documents. The ExoTime adopts an external Knowledge Base (KB) in order to achieve better prediction performance, and it also applies a bagging method to the temporal relation prediction. We show that the effectiveness of the proposed approaches by empirical results using Korean TimeBank. The ExoTime system works as a part of ExoBrain that is an artificial intelligent QA system.

Variable Selection with Regression Trees

  • Chang, Young-Jae
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.357-366
    • /
    • 2010
  • Many tree algorithms have been developed for regression problems. Although they are regarded as good algorithms, most of them suffer from loss of prediction accuracy when there are many noise variables. To handle this problem, we propose the multi-step GUIDE, which is a regression tree algorithm with a variable selection process. The multi-step GUIDE performs better than some of the well-known algorithms such as Random Forest and MARS. The results based on simulation study shows that the multi-step GUIDE outperforms other algorithms in terms of variable selection and prediction accuracy. It generally selects the important variables correctly with relatively few noise variables and eventually gives good prediction accuracy.

Multi-Label Classification Approach to Location Prediction

  • Lee, Min Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.121-128
    • /
    • 2017
  • In this paper, we propose a multi-label classification method in which multi-label classification estimation techniques are applied to resolving location prediction problem. Most of previous studies related to location prediction have focused on the use of single-label classification by using contextual information such as user's movement paths, demographic information, etc. However, in this paper, we focused on the case where users are free to visit multiple locations, forcing decision-makers to use multi-labeled dataset. By using 2373 contextual dataset which was compiled from college students, we have obtained the best results with classifiers such as bagging, random subspace, and decision tree with the multi-label classification estimation methods like binary relevance(BR), binary pairwise classification (PW).

Fault Prediction Using Statistical and Machine Learning Methods for Improving Software Quality

  • Malhotra, Ruchika;Jain, Ankita
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.241-262
    • /
    • 2012
  • An understanding of quality attributes is relevant for the software organization to deliver high software reliability. An empirical assessment of metrics to predict the quality attributes is essential in order to gain insight about the quality of software in the early phases of software development and to ensure corrective actions. In this paper, we predict a model to estimate fault proneness using Object Oriented CK metrics and QMOOD metrics. We apply one statistical method and six machine learning methods to predict the models. The proposed models are validated using dataset collected from Open Source software. The results are analyzed using Area Under the Curve (AUC) obtained from Receiver Operating Characteristics (ROC) analysis. The results show that the model predicted using the random forest and bagging methods outperformed all the other models. Hence, based on these results it is reasonable to claim that quality models have a significant relevance with Object Oriented metrics and that machine learning methods have a comparable performance with statistical methods.

Predicting stock price direction by using data mining methods : Emphasis on comparing single classifiers and ensemble classifiers

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.11
    • /
    • pp.111-116
    • /
    • 2017
  • This paper proposes a data mining approach to predicting stock price direction. Stock market fluctuates due to many factors. Therefore, predicting stock price direction has become an important issue in the field of stock market analysis. However, in literature, there are few studies applying data mining approaches to predicting the stock price direction. To contribute to literature, this paper proposes comparing single classifiers and ensemble classifiers. Single classifiers include logistic regression, decision tree, neural network, and support vector machine. Ensemble classifiers we consider are adaboost, random forest, bagging, stacking, and vote. For the sake of experiments, we garnered dataset from Korea Stock Exchange (KRX) ranging from 2008 to 2015. Data mining experiments using WEKA revealed that random forest, one of ensemble classifiers, shows best results in terms of metrics such as AUC (area under the ROC curve) and accuracy.

Optimization of Random Subspace Ensemble for Bankruptcy Prediction (재무부실화 예측을 위한 랜덤 서브스페이스 앙상블 모형의 최적화)

  • Min, Sung-Hwan
    • Journal of Information Technology Services
    • /
    • v.14 no.4
    • /
    • pp.121-135
    • /
    • 2015
  • Ensemble classification is to utilize multiple classifiers instead of using a single classifier. Recently ensemble classifiers have attracted much attention in data mining community. Ensemble learning techniques has been proved to be very useful for improving the prediction accuracy. Bagging, boosting and random subspace are the most popular ensemble methods. In random subspace, each base classifier is trained on a randomly chosen feature subspace of the original feature space. The outputs of different base classifiers are aggregated together usually by a simple majority vote. In this study, we applied the random subspace method to the bankruptcy problem. Moreover, we proposed a method for optimizing the random subspace ensemble. The genetic algorithm was used to optimize classifier subset of random subspace ensemble for bankruptcy prediction. This paper applied the proposed genetic algorithm based random subspace ensemble model to the bankruptcy prediction problem using a real data set and compared it with other models. Experimental results showed the proposed model outperformed the other models.

Enhancing of Red Tide Blooms Prediction using Ensemble Train (적조발생예측에 대한 통계학적 성능 향상 연구)

  • Kim, Wonju;Park, Sun;Cho, Jiu;Na, Yeonghwa;Yang, Huyeol;Lee, Seong Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.1010-1011
    • /
    • 2012
  • 적조란 유해조류의 일시적인 대 번식으로 바다를 적색으로 변화시키며 연안 환경 및 바다 생태계에 악영향뿐만 아니라 양식장의 어패류를 집단 폐사 시키는 현상이다. 적조에 의한 양식어업의 피해는 매년 발생하고 있으며 매년 적조방제에 많은 비용을 소비하고 있다. 이 때문에 적조 발생을 미리 예측할 수 있으면 적조에 대한 피해 및 방재 비용을 최소화 시킬 수 있다. 본 논문은 앙상블 학습은 이용한 적조발생 예측 방법을 제안한다. 제안방법은 앙상블 학습의 bagging과 boosting 방법을 이용하여서 적조를 예측의 성능을 향상시킨다. 실험결과 제안방법은 단일 분류기에 비하여서 더 좋은 적조 발생 예측 성능을 보였다.

Applied linear and nonlinear statistical models for evaluating strength of Geopolymer concrete

  • Prem, Prabhat Ranjan;Thirumalaiselvi, A.;Verma, Mohit
    • Computers and Concrete
    • /
    • v.24 no.1
    • /
    • pp.7-17
    • /
    • 2019
  • The complex phenomenon of the bond formation in geopolymer is not well understood and therefore, difficult to model. This paper present applied statistical models for evaluating the compressive strength of geopolymer. The applied statistical models studied are divided into three different categories - linear regression [least absolute shrinkage and selection operator (LASSO) and elastic net], tree regression [decision and bagging tree] and kernel methods (support vector regression (SVR), kernel ridge regression (KRR), Gaussian process regression (GPR), relevance vector machine (RVM)]. The performance of the methods is compared in terms of error indices, computational effort, convergence and residuals. Based on the present study, kernel based methods (GPR and KRR) are recommended for evaluating compressive strength of Geopolymer concrete.