• Title/Summary/Keyword: baculovirus expression

Search Result 169, Processing Time 0.035 seconds

Cloning of Major Capsid Protein Gene of Pseudorabies Virus and Expression by Baculovirus Vector System (Pseudorabies Virus의 Major Capsid Protein 유전자의 클론닝과 Baculovirus Vector System에 의한 발현)

  • An, Dong-Jun;Jun, Moo-Hyung;Song, Jae-Young;Park, Jong-Hyeon;Hyun, Bang-Hun;Chang, Kyung-Soo;An, Soo-Hwan
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.2
    • /
    • pp.151-162
    • /
    • 1996
  • Pseudorabies is caused by Pseudorabies virus (PRV: Aujeszky's disease virus) of Herpesviridae that is characterized by 100 to 150nm in size with a linear double-stranded DNA molecule with of approximately $90{\times}10^6Da$. This disease affects most of domestic animals such as swine, cattle, dog, sheep, cat, chicken, etc. causing high mortality and economic losses. In swine, young piglets show high mortality and pregnant sows, reproductive failures. However the adult swine reveals no clinical signs in general. But they become a carrier state and play an important role for propagation of the disease. In this study, the nucleotide sequence of major casid protein gene of PRV, Yangsan strain isolated from the diseased swine in Korea was analyzed, and the recombinant MCP was produced by expression of the MCP gene in Sf-9 cell using baculovirus transfer vector system. As result, in BamHI digestion, MCP gene locus of PRV YS strain showed different from that of Indiana S strain. The patterns of enzyme mapping were also found to be unidentical each other. The sequence of the MCP gene partially analyzed showed 98.09% identity to Indiana S strain. The expression of MCP in Sf-9 cell cotransfected by pVLMCP-44 baculovirus expression vector was characterized by Southern blot hybridization, immunofluoresent and immunocytochemical tests, SDS-PAGE and Western blotting. The rMCP with M.W. 142kDa was most effectively expressed in Sf-9 cells at the 3-4th days post inoculation of the recombinant baculovirus by 2 moi.

  • PDF

Expression of Recombinant Human Bone morphogenetic protein 2 (hBMP2) in Insect cells

  • Kim, Seong-Wan;Kim, Seong-Ryul;Park, Seung Won;Goo, Tae-Won;Choi, Kwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.34 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • Bone morphogenetic protein 2 (BMP2) plays an important role in the development of bone and cartilage. It is involved in the hedgehog pathway, TGF beta signaling pathway, and in cytokine-cytokine receptor interaction. It is involved also in cardiac cell differentiation and epithelial to mesenchymal transition. In this study, We expressed human BMP2 (hBMP2) recombinant protein using Baculovirus Expression Vector System (BEVS) in Sf9 insect cells. The hBMP2 cDNA was cloned into baculovirus transfer vector, pBacgus-4x-1 and recombinant baculovirus was screened out through X-gal and GUS-fusions assay. Western blot analysis shown that molecular weight of hBMP2 recombinant protein was about 44.71 kDa.

Insect Cell Surface Expression of Hemagglutinin (HA) of Egyptian H5N1 Avian Influenza Virus Under Transcriptional Control of Whispovirus Immediate Early-1 Promoter

  • Gadalla, M.R.;El-Deeb, A.H.;Emara, M.M.;Hussein, H.A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1719-1727
    • /
    • 2014
  • In the present study, whispovirus immediate early 1 promoter (ie-1) was used to initiate surface expression of the hemagglutinin (HA) protein of Egyptian H5N1 avian influenza virus (AIV) by using the baculovirus expression vector system. The HA gene and whispovirus ie-1 promoter sequence were synthesized as a fused expression cassette (ie1-HA) and successfully cloned into the pFastBac-1 transfer vector. The recombinant vector was transformed into DH10Bac competent cells, and the recombinant bacmid was generated via site-specific transposition. The recombinant bacmid was used for transfection of Spodoptera frugiperda (Sf-9) insect cells to construct the recombinant baculovirus and to induce expression of the HA protein of H5N1 AIV. The recombinant glycoprotein expressed in Sf-9 cells showed hemadsorption activity. Hemagglutination activity was also detected in both extra- and intracellular recombinant HAs. Both the HA and hemadsorption activities were inhibited by reference polyclonal anti-H5 sera. Significant expression of the recombinant protein was observed on the surface of infected insect cells by using immunofluorescence. SDS-PAGE analysis of the expressed protein revealed the presence of a visually distinguishable band of ~63 kDa in size, which was absent in the non-infected cell control. Western blot analysis confirmed that the distinct 63 kDa band corresponded to the recombinant HA glycoprotein of H5N1 AIV. This study reports the successful expression of the HA protein of H5N1 AIV. The expressed protein was displayed on the plasma membrane of infected insect cells under the control of whispovirus ie-1 promoter by using the baculovirus expression vector system.

Expression of Bombyx mori Nucleopolyhedrovirus ORF4 under the Control of BaculoviruS Ie1 Promoter by a Novel Bac-to-Bac/BmNPV Baculovirus Expression System

  • Su, Wujie;Wu, Yan;Wu, Huiling;Wang, Wenbing
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • Open reading frame 4 of Bombyx mori nucleopolyhedrovirus (BmNPV), designated as Bm4, is a gene whose function is completely unknown. With the recently developed BmNPV bacmid and a modified pFastBac1 whose polyhedrin promoter was replaced with ie1 promoter, a recombinant bacmid expressing Bm4-EGFP fusion protein under the control of ie1 promoter in BmN cells was successfully constructed. The result not only showed that the polyhedrin promoter can be replaced efficiently with other promoters to direct the expression of foreign gene in BmN cells by using Bac-to-Bac/BmNPV baculovirus expression system but also laid the foundation for rescue experiment of Bm4 deletion mutant due to the ability of ie1 promoter to direct gene expression throughout the infection cycle.

Constructions of a Transfer Vector Containing the gX Signal Sequence of Pseudorabies Virus and a Recombinant Baculovirus

  • Lee, Hyung-Hoan;Kang, Hyun;Kim, Jung-Woo;Hong, Seung-Kuk;Kang, Bong-Joo;Song, Jae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.541-547
    • /
    • 1999
  • Constructions of a transfer vector and a recombinant baculovirus using the thymidine kinase gene of the Herpes simplex virus type 1 strain F (HSV -1) were carried out. Newly cloned transfer vector, pHcgXIIIB, was constructed by insertion of the glycoprotein gX gene signal peptide sequence of Pseudorabies virus into the baculovirus vector pHcEV-IV. The gX sequence was inserted just downstream from the promoter for the polyhedrin gene of the Hyphantria cunea nuclear polyhedrosis virus (HcNPV). HSV-1 thymidine kinase(tk) gene (1.131 kb) was used as a candidate gene for transferring into the baculovirus expression system. The tk gene was inserted into a BamHI site downstream from the gX sequence-promoter for the polyhedrin gene in the pHcgXIIIB transfer vector and was transferred into the infectious lacZ-HcNPV expression vector. Recombinant virus was isolated and was named gX-TK-HcNPV. The recombinant virus produced a 45 kDa gX-TK fusion protein in Spodoptera frugiperda cells, which was confirmed by Western blot analysis. Microscopic examination of gX-TK-HcNPV-infected cells revealed normal multiplication. Fluorescent antibody staining indicated that the gX-TK fusion protein was present in the cytoplasm. These results indicated that the transfer vector successfully transferred the gX-tk gene into the baculovirus expression system.

  • PDF

Construction of the Novel Baculovirus Transfer Vector Using the p10 Gene of BmNPV (BmNPV의 p10 유전자를 이용한 새로운 전이벡터 개발)

  • 강석우;진병래
    • Journal of Sericultural and Entomological Science
    • /
    • v.39 no.2
    • /
    • pp.180-185
    • /
    • 1997
  • To develope the novel baculovirus transfer vector, the p10 gene was cloned from the Bombyx mori nuclear polygedrosis virus (BmNPV) vB2 strain isolated from the B. mori larvae of sericultural farms. The novel transfer vector was constructed by using the p10 gene of BmNPV vB2 strain was 210 bp. The TAAG sequence at the -71 bp of upstream from translation initiator ATG and two polyadenylation signal site at the downstream from terminator TAA were also detected in the p10 gene. The 5' and 3' flanking region of the p10 gene amplified by PCR was cloned into pBluescriptII SK(+) and then transfer vector pBm10 was construceted. The 7.9 kb pBm10 was analysed by restriction enzymes and the map was confirmed. In order to determine the expression of foreign gene of pBm10, $\beta$-galactosidase gene was inserted in the SmaI site of foreign gene cloning site of pBm10. The pBm10 containing $\beta$-galactosidase gene was cotranfected wth genomic DNA of BmNPV vB2 into BmN-4 cells. The recombinant baculovirus expressing $\beta$-galactosidase was also produced polygedra in the infected cells. The results indicated that pBm10 is functional, suggesting that in the baculovirus expression vector system, the recombinant virus produced by pBm10 was effective by oral infection for the producing recombinant proteins in in vivo expression.

  • PDF

Expression and Characterization of Recombinant E2 Protein of Hepatitis C Virus by Insect Cell/Baculovirus Expression System

  • Han, Bong-Kwan;Lee, Bum-Yong;Min, Mi-Kyung;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.4
    • /
    • pp.361-368
    • /
    • 1998
  • The E2 protein of HCV (hepatitis C virus) is thought to have a potential role in the development of subunit vaccines and diagnostics. To express it by the insect cell/baculovirus expression (Bacu) system, we constructed a recombinant Autographa californica nuclear polyhedrosis virus (AcIL3E2), determined the most appropriate expression conditions in terms of host cell line and culture medium, and characterized the expressed HCV E2 protein. A culture system using Trichoplusia ni BTI-TN5Bl-4 cells and SF 900IISFM medium expressed a relatively high level of HCV E2 protein. It was revealed that its glycosylation properties and subcellular localization were almost the same as the ones in the mammalian cell expression system previously reported, suggesting the recombinant HCV E2 protein derived from our Bacu system can be utilized for development of a subunit vaccine and diagnostics. Interestingly, HCV E2 protein was not degraded at all even at 43 h post-heat shock in the heat shock-induced necrotic cells, probably due to its integration into the microsomal membrane, indicating that heat shock can be employed to purify HCV E2 protein.

  • PDF

Comparison of Recombinant Baculovirus Vector Systems and Control Vector System (재조합 베큘로바이러스벡터와 대조 벡터의 비교)

  • Kim, Ji-Young;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.954-957
    • /
    • 2015
  • A recombinant baculovirus vector systems were composed of genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD). These recombinant baculovirus vector system were transfected into various cell lines and tissues and confirmed gene transfer and expression of these vector systems with only control vector system. From the result, gene transfer and gene expression of recombinant baculovirus vector systems were superior in terms of efficacy and safety than in the control vector system.

  • PDF

A Novel Possibility of Recombinant Baculovirus Vector (재조합 베큘로바이러스 벡터의 새로운 가능성)

  • Kim, Ji-Young;Kim, Hyun Joo;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.838-841
    • /
    • 2015
  • Recombinant baculovirus vector is composed of genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD). This recombinant baculovirus vector was transfected into cell lines and tissues and then found out a novel possibility in view of gene transfer and gene expression in comparison to other vector systems. Efficacy of gene transfer and gene expression of this recombinant baculovirus vector was higher than any other vector system.

  • PDF

Expression of Escherichia coli ${\beta}$-galactosidase Gene by New Transfer Vector of Baculovirus (새로운 Baculovirus 전이벡터를 이용한 Escherichia coli ${\beta}$-galactosidase 유전자의 발현)

  • Woo, Soo-Dong;Kim, Woo-Jin;Kim, Hye-Seong;Jin, Byung-Rae;Kang, Seok-Kwon
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.72-76
    • /
    • 1996
  • To investigate the expression efficiency of new transfer vector of Bombyx mori nuclear polyhedrosis virus (BmNPV), Escherichia coli lacZ gene was inserted into new transfer vector pBmKSK1, under the control of polyhedrin promoter and expressed in BmN-4 cells and larvae of silkworm, Bombyx mori. The recombinant virus containing lacZ gene was isolated from BmN-4 cells coinfected with transfer vectro pBmKSK1-LacZ and wild type BmNPV genome, and analysed by Southern blotting. The expression of ${\beta}$-galactosidase was characterized by SDS-PAGE, Western blotting and ${\beta}$-galactosidase activity assay. The results showed that the level of expression in silkworm larvae was higher than that of BmN-4 cells.

  • PDF