• Title/Summary/Keyword: bacteriochlorophyll e

Search Result 4, Processing Time 0.016 seconds

Skin Anti-Aging Activities of Bacteriochlorophyll a from Photosynthetic Bacteria, Rhodobacter sphaeroides

  • Kim, Nam Young;Yim, Tae Bin;Lee, Hyeon Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1589-1598
    • /
    • 2015
  • In this work, the anti-aging skin effects of bacteriochlorophyll a isolated from Rhodobacter sphaeroides are first reported, with notably low cytotoxicity in the range of 1% to 14% in adding 0.00078 (% (w/w)) of the extracts, compared with the normal growth of both human dermal fibroblast and keratinocyte cells without any treatment as a control. The highest production of procollagen from human fibroblast cells (CCD-986sk) was observed as 221.7 ng/ml with 0.001 (% (w/w)) of bacteriochlorophyll a, whereas 150 and 200 ng/ml of procollagen production resulted from addition of 0.001 (% (w/w)) of the photosynthetic bacteria. The bacteriochlorophyll-a-induced TNF-α production increased to 63.8%, which was lower secretion from HaCaT cells than that from addition of 0.00005 (% (w/w)) of bacteriochlorophyll a. Additionally, bacteriochlorophyll a upregulated the expression of genes related to skin anti-aging (i.e., keratin 10, involucrin, transglutaminase-1, and MMPs), by up to 4-15 times those of the control. However, crude extracts from R. sphaeroides did not enhance the expression level of these genes. Bacteriochlorophyll a showed higher antioxidant activity of 63.8% in DPPH free radical scavenging than those of water, ethanol, and 70% ethanol extracts (14.0%, 57.2%, and 12.6%, respectively). It was also shown that the high antioxidant activity could be attributed to the skin anti-aging effect of bacteriochlorophyll a, although R. sphaeroides itself would not exhibit significant anti-aging activities.

Effect of Carotenoides on the in vitro Aggregation of Bacteriochlorophyll e

  • Hirabayashi, Hiroki;Ohmura, Satoshi;Ishii, Takasada;Uehara, Kaku
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.370-372
    • /
    • 2002
  • In order to investigate effect of the carotenoids (Car) on aggregation of Bacterochlorophyll (BChl) in chlorosome, we studied the spectral difference in aggregates of BChl e formed in the absence and presence of a few kinds of Car in dimethyl sulfoxide (DMSO) -water solution. The absorption spectra of aggregates made of only BChl e and those made of a mixture of BChl e and Car were almost the same. However, the kinetics and circular dichroism (CD) spectra of aggregate of these were markedly different by kind of Car. Specifically, the rate of aggregation for a mixture of BChl e and isorenietene that contains phenyl as end groupe was faster than that for only BChl e. CD spectra of aggregates made of a mixture of BChl e and isorenietene dramatically changed compared to that made of only BChl e. We propose that BChl might form several kinds of rod-like supramolecular structures to in the presence of some kind of Car in chlorosome.

  • PDF

Isolation and Characteristics of Photosynthetic Bacterium, Erythrobacter longus SY-46 which Produces Bacterial Carotenoids (Bacterial Carotenoids를 생산하는 광합성세균 Erythrobacter longus SY-46의 분리 및 특성)

  • Kim, Yun-Sook;Lee, Dae-Sung;Jeong, Seong-Yun;Lee, Won-Jae
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.469-477
    • /
    • 2008
  • The aerobic photosynthetic bacterium, which produces bacterial carotenoids was isolated and identified from coastal marine environments. This bacterium was identified by 16S rDNA sequencing and designated as Erythrobacter longus SY-46. E. longus SY-46 was Gram negative and rod shape, and the optimal culture conditions were $25^{\circ}C$, pH 7.0, and 3.0% NaCl concentration, respectively. The carbon and nitrogen sources required for the optimal growth were lactose and tryptone, respectively. Fatty acid compositions of E. longus SY-46 were $C_{18:1}$(78.32%), v-linolenic acid($C_{18:3n9.12.15c}:3.83%$), margaric acid($C_{17:0}$: 3.38%), palmitic acid($C_{16:0}$: 3.07%), and docosahexaenoic acid($C_{22:6n3}$: 2.21%). In addition, E. longus SY-46 showed the characteristic absorption peaks of bacterial carotenoids(in the region of 450 to 480 nm) and bacteriochlorophyll(770 to 772 nm). Major carotenoids of E. longus SY-46 were polyhydroxylated xanthophylls such as fucoxanthin and zeaxanthin.

Production of Hydrogen from Glucose by Rhodopseudomonas sphaeroides. (Rhodopseudomonas sphaeroides에 의한 수소 생산 -Glucose 및 유기산의 영향-)

  • 김미선;문광웅;이상근;김선창
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.2
    • /
    • pp.89-95
    • /
    • 1998
  • Rhodopseudomonas sphaeroides K7 and E15-1 produced hydrogen from glucose rapidly for the first 24 hrs of culture under the anaerobic and photosynthetic conditions and then ceased the hydrogen production because of the accumulation of organic acids such as acetic acid and formic acid in the culture broth, decreasing the pH to 4.2-4.5. Only 43% and 73% of glucose in the culture were consumed even after 6 days of incubation by R. sphaeroides K7 and E15-1, respectively. The hydrogen production and glucose consumption, however, were substantially increased when the pH of the culture was adjusted to 6.8-7.0: Hydrogen production continues even after 10 days of culture and glucose was consumed completely after 2.5 and 4.5 days by R. sphaeroides K7 and E15-1, respectively, Furthermore, the bacteriochlorophyll contents in R. sphaeroides K7 and E15-1 were increased by 44 and 9 folds and the cell concentrations by 10 and 2.5 folds, respectively, after 7 days of culture. R. sphaeroides K7 and E15-1 also produced hydrogen from acetic, lactic, butyric and malic acids under the anaerobic and photosynthetic conditions even though the amounts of hydrogen produced were lower than that from glucose. The results of this experiment indicate that under the anaerobic and synthetic conditions R. sphaeroides K7 and E15-1 might use the NADH oxidation mediated by ferredoxin and hydrogenase to evolve hydrogen from glucose for the first 24 hrs and then the organic acids produced were used as electron donners for the production of hydrogen in the nitrogen-limited condition.

  • PDF