• Title/Summary/Keyword: bactericidal treatment

Search Result 158, Processing Time 0.026 seconds

Synergistic effect of xylitol and ursolic acid combination on oral biofilms

  • Zou, Yunyun;Lee, Yoon;Huh, Jinyoung;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.288-295
    • /
    • 2014
  • Objectives: This study was designed to evaluate the synergistic antibacterial effect of xylitol and ursolic acid (UA) against oral biofilms in vitro. Materials and Methods: S. mutans UA 159 (wild type), S. mutans KCOM 1207, KCOM 1128 and S. sobrinus ATCC 33478 were used. The susceptibility of S. mutans to UA and xylitol was evaluated using a broth microdilution method. Based on the results, combined susceptibility was evaluated using optimal inhibitory combinations (OIC), optimal bactericidal combinations (OBC), and fractional inhibitory concentrations (FIC). The anti-biofilm activity of xylitol and UA on Streptococcus spp. was evaluated by growing cells in 24-well polystyrene microtiter plates for the biofilm assay. Significant mean differences among experimental groups were determined by Fisher's Least Significant Difference (p < 0.05). Results: The synergistic interactions between xylitol and UA were observed against all tested strains, showing the FICs < 1. The combined treatment of xylitol and UA inhibited the biofilm formation significantly and also prevented pH decline to critical value of 5.5 effectively. The biofilm disassembly was substantially influenced by different age of biofilm when exposed to the combined treatment of xylitol and UA. Comparing to the single strain, relatively higher concentration of xylitol and UA was needed for inhibiting and disassembling biofilm formed by a mixed culture of S. mutans 159 and S. sobrinus 33478. Conclusions: This study demonstrated that xylitol and UA, synergistic inhibitors, can be a potential agent for enhancing the antimicrobial and anti-biofilm efficacy against S. mutans and S. sobrinus in the oral environment.

Protection of palmitic acid treatment in RAW264.7 cells and BALB/c mice during Brucella abortus 544 infection

  • Reyes, Alisha Wehdnesday Bernardo;Huy, Tran Xuan Ngoc;Vu, Son Hai;Kim, Hyun Jin;Lee, Jin Ju;Choi, Jeong Soo;Lee, John Hwa;Kim, Suk
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.18.1-18.12
    • /
    • 2021
  • Background: We previously elucidated the protective mechanism of Korean red ginseng oil (RGO) against Brucella abortus infection, and our phytochemical analysis revealed that palmitic acid (PA) was an abundant component of RGO. Consequently, we investigated the contribution of PA against B. abortus. Objectives: We aimed to investigate the efficacy of PA against B. abortus infection using a murine cell line and a murine model. Methods: Cell viability, bactericidal, internalization, and intracellular replication, western blot, nitric oxide (NO), and superoxide (O2-) analyses and flow cytometry were performed to determine the effects of PA on the progression of B. abortus infection in macrophages. Flow cytometry for cytokine analysis of serum samples and bacterial counts from the spleens were performed to determine the effect of PA in a mouse model. Results: PA did not affect the growth of B. abortus. PA treatment in macrophages did not change B. abortus uptake but it did attenuate the intracellular survivability of B. abortus. Incubation of cells with PA resulted in a modest increase in sirtuin 1 (SIRT1) expression. Compared to control cells, reduced nitrite accumulation, augmented O2-, and enhanced pro-inflammatory cytokine production were observed in PA-treated B. abortus-infected cells. Mice orally treated with PA displayed a decreased serum interleukin-10 level and enhanced bacterial resistance. Conclusions: Our results suggest that PA participates in the control of B. abortus within murine macrophages, and the in vivo study results confirm its efficacy against the infection. However, further investigations are encouraged to completely characterize the mechanisms involved in the inhibition of B. abortus infection by fatty acids.

Streptomycin-anionic linear globular dendrimer G2: Novel antibacterial and anticancer agent

  • Javadi, Sahar;Ardestani, Mehdi Shafiee
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.241-248
    • /
    • 2019
  • Recent researches demonstrated well promising anticancer activities for antibiotics. Such effects would be significantly increased while nanoparticle based delivery systems were applied. In this study, the goal was aim to improve anticancer and antitoxic effects of Streptomycin by loading on special kind of dendrimer (anionic-linear-globular second generation). In the current study, Size and zeta potential as well as AFM techniques have been used to prove the fact that the loading was performed correctly. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the drug loaded on dendrimer nanoparticle were determined and compared with both of dendrimer alone and free drug with respect to staphylococcus aureus as the test microorganism. The anticancer activity among three groups including Streptomycin, Streptomycin -G2 dendrimer, and control was measured in vitro. In vitro studies showed that G2 anionic linear-globular polyethylene-glycol-based dendrimer, which loaded on Streptomycin was able to significantly improve the treatment efficacy over clinical Streptomycin alone with respect to proliferation assay. Maximal inhibitory concentration (IC50) was calculated to be $257{\mu}g/mL$ for streptomycin alone and $55{\mu}g/mL$ for Streptomycin -G2 dendrimer. In addition, Streptomycin -G2 dendrimer conjugate prevented the growth of MCF-7 cancerous cells in addition to enhance the number of apoptotic and necrotic cells as demonstrated by an annexin V-fluorescein isothiocyanate assay. Streptomycin -G2 dendrimer conjugate was able to increase Bcl-2/Bax ratio in a large scale compared with the control group and Streptomycin alone. Based on results a new drug formulation based nano-particulate was improved against S. aureus with sustained release and enhanced antibacterial activity as well as anticancer activity shown for functional cancer treatment with low side effects.

Anticaries Effect of Ethanol Extract of Terminalia chebula

  • Lee, Moonkyung;Hwang, Young Sun
    • Journal of dental hygiene science
    • /
    • v.21 no.2
    • /
    • pp.119-126
    • /
    • 2021
  • Background: Dental caries is mainly composed of various cellular components and is deposited around the tooth surface and gums, causing a number of periodontal diseases. Streptococcus mutans is commonly found in the human oral cavity and is a significant contributor to tooth decay. The use of antibacterial ingredients in oral hygiene products has demonstrated usefulness in the management of dental caries. This study investigated the anticaries effect of the ethanol extract of Terminalia chebula (EETC) against S. mutans and their cytotoxicity to gingival epithelial cells. Methods: The EETC was prepared from T. chebula fruit using ethanol extraction. Disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and colony forming unit (CFU) were analyzed to investigate the antimicrobial activity of the EETC. Glucan formation was measured using the filtrate of the bacterial culture medium and sucrose. Gene expression was analyzed using reverse transcription-polymerase chain reaction (RT-PCR). Cytotoxicity was analyzed via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Results: The antibacterial activity of the EETC was explored using disc diffusion and CFU measurements. The MIC and MBC of the EETC were 10 and 20 ㎍/ml, respectively. EETC treatment decreased insoluble glucan formation by S. mutans enzymes and also resulted in reduced glycosyltransferase B (gtf B), gtf C, gtf D, and fructosyltransferase (ftf), expressions on RT-PCR. In addition, at effective antibacterial concentrations, EETC treatment was not cytotoxic to gingival epithelial cells. Conclusion: These results demonstrate that the EETC is an effective anticaries ingredient with low cytotoxicity to gingival epithelial cells. The EETC may be useful in antibacterial oral hygiene products for the management of dental caries.

Analysis of temperature changes and sterilization effect of diode laser for the treatment of peri-implantitis by wavelength and irradiation time (임플란트 주위염 치료용 diode laser의 파장 및 조사시간에 따른 온도 변화와 살균효과 분석)

  • Seol, Jeong-Hwan;Lee, Jun Jae;Kum, Kee-Yeon;Lee, Jong-Ho;Lim, Young-Joon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.3
    • /
    • pp.178-188
    • /
    • 2017
  • Purpose: We compared the effects of newly developed diode laser (Bison 808 nm Diode laser) on the treatment of peri-implantitis with conventional products (Picasso 810 nm Diode laser) by comparing the surface temperature of titanium disc and bacterial sterilization according to laser power. Materials and Methods: The titanium disc was irradiated for 60 seconds and 1 - 2.5 W using diode laser 808 nm and 810 nm. The surface temperature of the titanium disc was measured using a temperature measurement module and a temperature measurement program. In addition, in order to investigate the sterilizing effect according to the laser power, 808 nm laser was irradiated after application of bacteria to sandblasted large-grit acid-etched (SLA) and resorbable blast media (RBM) coated titanium discs. The irradiated disks were examined with scanning electron microscopy. Results: Both 808 nm and 810 nm lasers increased disk surface temperature as the power increased. When the 810 nm was irradiated under all conditions, the initial temperature rise rate, the descending rate, and the temperature change before and after was higher than that of 808 nm. Disk surface changes were not observed on both lasers at all conditions. Bacteria were irradiated with 808 nm, and the bactericidal effect was increased as the power increased. Conclusion: When applying these diode lasers to the treatment of peri-implantitis, 808 nm which have a bactericidal effect with less temperature fluctuation in the same power conditions would be considered safer. However, in order to apply a laser treatment in the dental clinical field, various safety and reliability should be secured.

Efficacy of Sanitizers Due to the Changes of Contact Time and Temperature (사용시간 및 온도조건 변화에 따른 살균소독제의 유효성)

  • Kim, Hyung-Il;Park, Sung-Kwan;Kwak, In-Shin;Sung, Jun-Hyun;Lim, Ho-Soo;Kim, Hoo-Jung;Kim, So-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.325-332
    • /
    • 2010
  • The bactericidal efficacy of three common sanitizers (100 or 200 ppm of sodium hypochlorite, 100 or 200 ppm of n-alkyl($C_{12}-C_{18}$)benzyldimethyl ehloride, and 50 or 100 ppm of peroxyacetie acid) against Escherichia coli ATCC 10536 and Staphylococcus aureus ATCC 6538 was studied using the suspension test method at various exposure temperatures (4~$40^{\circ}C$) and times(1~60min) under both dirty and clean conditions, respectively. During the suspension tests, sodium hypochlorite (200 ppm) showed higher bactericidal activity than the other sanitizers under clean conditions, with 5 log reductions against E. coli as well as S. aureus in the first 1 min of treatments at $4^{\circ}C$, However, the efficacy of sodium hypochlorite decreased markedly under dirty conditions due to its susceptibility to interfering substances. The efficacy of the n-alkyl($C_{12}-C_{18}$)benzyldimethyl chloride increased considerable as the exposure temperature and time increased. The bactericidal efficacy of the n-alkyl($C_{12}-C_{18}$)benzyldimethyl chloride might be less effective on low temperature, however, the longer time the sanitizer is in contact, the more effective the sanitization effect. Treatment with peroxyacetic acid (100 ppm) showed at least 5 log reduction against E. coli and S. aureus for 5 min at $4^{\circ}C$ under both clean and dirty conditions. The efficacy of the peroxyacetic acid was not much altered by interfering substances and aflected by changes in temperature or time.

Effects of the 461-nm LED Light and Combination with Acid Stress Treatment on Staphylococcus aureus and Escherichia coli (461-nm LED조사와 산의 병행처리가 Staphylococcus aureus와 Escherichia coli 생육에 미치는 영향)

  • Kim, Se-Hun;Bang, Woo-Suk
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.526-529
    • /
    • 2013
  • This study was conducted to evaluate the disinfection effects of Staphylococcus aureus, and Escherichia coli treated with 461-nm LED and pH 5 at $15^{\circ}C$ for 10 h. S. aureus strains were decreased by about 4 log CFU/mL after 461-nm LED irradiation treatment alone for 10 h. E. coli strains were inactivated by irradiation. However, when microorganisms were subjected to a combined treatment of 461-nm LED and pH 5, both strains were inactivated by irradiation for 7 h. The highest D-value was 5.05 h for S. aureus ATCC 27664 and the lowest D-value was 1.39 h for E.coli O157: H7 ATCC 35150 (p<0.05) with 461-nm LED irradiation. For the combined treatment (461-nm LED and pH 5), the highest D-value was 1.58 h for S. aureus ATCC 19095, whereas the lowest D-value was 0.83 h for S. aureus ATCC 27664 (p<0.05). These data showed that bactericidal effects of a combination of pH 5 with 461-nm LED irradiation were enhanced compared to 461-nm LED irradiation alone.

Fabrication of TiO2 Impregnated Stainless Steel Fiber Photocatalyts and Evaluation of Photocatalytic Activity (TiO2 담지 스테인리스 강 섬유 광촉매 제조 및 광촉매 활성 평가)

  • Song, Sun-Jung;Kim, Kyoung Seok;Kim, Kyung Hwan;Li, Hui Jie;Cho, Dong Lyun;Kim, Jong Beom;Park, Hee Ju;Shon, Hokyong;Kim, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.674-679
    • /
    • 2008
  • $TiO_2$ impregnated stainless steel fiber photocatalysts ($TiO_2/SSF$) were fabricated to overcome inherent problems of powdery $TiO_2$ photocatalysts in water treatment. Adhesion strength of the impregnated $TiO_2$ was examined using an ultrasonic-cleaner. Photocatalytic activity was evaluated through decomposition experiment of methylene blue and formic acid. Bactericidal efficiency was evaluated through sterilization experiment of E. Coli and Vibrio Vulnificus. Adhesion strength of the impregnated $TiO_2$ was so high that more than 95% was left over even after the treatment in an ultrasonic-cleaner for 30 min. Methylene blue and formic acid were decomposed as much as 60% and 38% of the initial concentration and more than 99.9% of E. Coli and Vibrio Vulnificus were killed after 1 hour exposure to the prepared photocatalyst under UV irradiation. In the case of decomposition of formic acid, decomposition ratio increased if oxidants were added. Especially the decomposition ratio increased as high as 80% when hydrogen peroxide was added as an oxidant.

The enhancing effect of Acanthopanax sessiliflorus fruit extract on the antibacterial activity of porcine alveolar 3D4/31 macrophages via nuclear factor kappa B1 and lipid metabolism regulation

  • Hwang, Eunmi;Kim, Gye Won;Song, Ki Duk;Lee, Hak-Kyo;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1776-1788
    • /
    • 2019
  • Objective: The demands for measures to improve disease resistance and productivity of livestock are increasing, as most countries prohibit the addition of antibiotics to feed. This study therefore aimed to uncover functional feed additives to help enhance livestock immunity and disease resistance, using Acanthopanax sessiliflorus fruit extract (ASF). Methods: ASF was extracted with 70% EtOH, and total polyphenolic and catechin contents were measured by the Folin-Ciocalteu and vanillin assay, respectively. The 3D4/31 porcine macrophage cells ($M{\Phi}$) were activated by phorbol 12-myristate 13-acetate (PMA), and cell survival and growth rate were measured with or without ASF treatment. Flow-cytometric analysis determined the lysosomal activity, reactive oxygen species levels (ROS), and cell cycle distribution. Nuclear factor kappa B ($NF-{\kappa}B$) and superoxide dismutase (SOD) protein expression levels were quantified by western blotting and densitometry analysis. Quantitative polymerase chain reaction was applied to measure the lipid metabolism-related genes expression level. Lastly, the antibacterial activity of 3D4/31 $M{\Phi}$ cells was evaluated by the colony forming unit assay. Results: ASF upregulated the cell viability and growth rate of 3D4/31 $M{\Phi}$, with or without PMA activation. Moreover, lysosomal activity and intracellular ROS levels were increased after ASF exposure. In addition, the antioxidant enzyme SOD2 expression levels were proportionately increased with ROS levels. Both ASF and PMA treatment resulted in upregulation of $NF-{\kappa}B$ protein, tumor necrosis factor $(TNF){\alpha}$ mRNA expression levels, lipid synthesis, and fatty acid oxidation metabolism. Interestingly, co-treatment of ASF with PMA resulted in recovery of $NF-{\kappa}B$, $TNF{\alpha}$, and lipid metabolism levels. Finally, ASF pretreatment enhanced the in vitro bactericidal activity of 3D4/31 $M{\Phi}$ against Escherichia coli. Conclusion: This study provides a novel insight into the regulation of $NF-{\kappa}B$ activity and lipid metabolism in $M{\Phi}$, and we anticipate that ASF has the potential to be effective as a feed additive to enhance livestock immunity.

Antibacterial effect of Ishige okamurae extract against cutaneous bacterial pathogens and its synergistic antibacterial effect against Pseudomonas aeruginosa

  • Kim, Bogeum;Kim, Min-Sung;Park, Seul-Ki;Ko, Seok-Chun;Eom, Sung-Hwan;Jung, Won-Kyo;Kim, Young-Mog
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.7
    • /
    • pp.18.1-18.6
    • /
    • 2018
  • Background: Cutaneous bacterial pathogens including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Propionibacterium acnes are often involved in acne vulgaris. The currently available therapeutic option for these skin pathogens is an antibiotic treatment, resulting in the emergence of antibiotic-resistant bacteria. The objective of this study was to discover an alternative antibacterial agent with lower side effect from marine algae. Results: The ethanolic extract of edible brown algae Ishige okamurae exhibits potent antibacterial activity against cutaneous bacterial pathogens. Among the ethanol soluble fractions, the n-hexane (Hexane)-soluble fraction exhibited the strongest antibacterial activity against the pathogens with MIC values ranging 64 to $512{\mu}g/mL$ and with minimum bactericidal concentration values ranging 256 to $2048{\mu}g/mL$. Furthermore, the combination with Hexane fraction and antibiotics (ceftazidime, ciprofloxacin, and meropenem) exhibited synergistic effect. Conclusion: This study revealed that the I. okamurae extract exhibited a synergistic antibacterial effect against acnerelated cutaneous bacterial pathogens acquired antibiotic resistant. Thus, the results of the present study suggested that the edible seaweed extract will be a promising antibacterial therapeutic agent against antibiotic-human skin pathogens and its infections.