• Title/Summary/Keyword: bacterial microbiota

Search Result 157, Processing Time 0.034 seconds

Cover Crop Effects of Winter Rye (Secale cereale L.) on Soil Characteristics and Conservation in Potato (Solanum tuberosum L.) Slope Field (경사밭 감자(Solanum tuberosum L.) 재배 시 휴한기 호밀(Secale cereal L.) 재배에 따른 토양 특성 및 토양 보전 효과)

  • Bak, Gyeryeong;Lee, Jeong-Tae
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1015-1025
    • /
    • 2021
  • Our research work aimed to evaluate cover crop effects of winter rye on soil characteristics, soil conservation, and yield productivities on potato fields with 15% slope during a fallowed period. There were two controls of bared field without any cultivation and conventional potato cultivation without winter rye. Potato cultivation increased soil pH, organic matter, available phosphate, and exchangeable cation regardless of cover crop cultivation. Sub-soil, particularly, all components of soil chemical properties showed higher value in winter rye cultivation than conventional cultivation. Higher soil density was observed on cover crop cultivation than conventional cultivation resulting from root residues of the cover crop both topsoil and subsoil. Cover crop residues positively affected plant growth and reduced the amount of soil erosion by holding the soil. Although severe soil erosion was seen in conventional cultivation, winter rye cultivation declined soil erosion by 47% during the fallow period on potato slope fields. Distinct soil bacterial communities were detected among treatments and some OTU(Operational Taxonomic Unit)s showed significantly higher abundance in winter rye treatment. Total yield and commercial rate demonstrated no significant differences while higher tuber phosphate, K+, and Mg2+ contents were observed in winter rye cultivation.

Complete genome sequence of Limosilactobacillus fermentum JNU532 as a probiotic candidate for the functional food and feed supplements

  • Bogun Kim;Ziayo Meng;Xiaoyue Xu;Seungwoo Baek;Duleepa Pathiraja;In-Geol Choi;Sejong Oh
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.271-274
    • /
    • 2023
  • Lactic acid bacteria (LAB) have been reported to possess various beneficial properties and are commonly used as probiotics. LAB play a crucial role in milk fermentation, industrial lactic acid fermentation, and health and medicine. Limosilactobacillus fermentum isolated from fermented dairy and food products is considered as 'Generally Recognized as Safe' by FDA. Limosilactobacillus fermentum plays an important role in modulation of the intestinal microbiota, enhancing the host immune system and improving feed digestibility. We isolated a probiotic candidate that was identified and named Limosilactobacillus fermentum JNU532. In a previous report, cell-free culture of L. fermentum JNU532 exhibited anti-melanogenic and antioxidant activities. In this study, we present the complete genome assembly of the bacterial strain JNU532. The final genome consists of one circular chromosome (2,077,416 base pairs) with a guanine + cytosine (GC) ratio of 51.5%.

Influences of Addition of Jellyfish Powder to Bed Soil and Bacterial Community Structure of Bed Soil (해파리 분말의 상토 첨가물로서의 효과 및 상토의 미생물 군집 변화에 대한 연구)

  • Beck, Bo-Ram;Choi, Jae-Ho;Kim, Young-Rok;Cha, Ha-Eun;Do, Hyung-Ki;Hwang, Cher-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.227-234
    • /
    • 2012
  • Recently, the population of toxic and/or unusable jellyfish is increasing during summer along the east coast of Korea, causing massive economical and ecological damage to fisheries, nuclear power plant and marine environment. To solve this problem, this study was carried out using jellyfish as a potential soil additive for horticulture. The jellyfish was solidified and homogenized, then mixed with a commercial bed soil. Allium tuberosum ROTH was planted to control bed soil (BS) and jellyfish powder mixed bed soil groups (Mixed bed soil, MBS), and following parameters were measured during five weeks: water content, electrical conductivity and growth of leaves. At the end of the experiment, bacterial community structures of each pot were analyzed by DGGE. The relative water adsorption of jellyfish powder was about 2.5 times greater compared to its dry weight. The water content of MBS group was significantly higher than BS group 6.5 to 14.2%, and the electric conductivity of MBS group was measured around 2.8 dS/m where BS group was resulted average of 1.8 dS/m. However, the leaves of BS group were grown 30% longer compared to MBS group. DGGE analysis of MBS group was shown in high number of phylum Bacteroidetes and increased diversity of Sphingobacteriia compared to BS group. Jellyfish powder as a soil additive surely will be a good candidate as humectant and microbiota stimulator, although there are several obstacles such as high electrical conductivity and residual alum salt which used for solidification of jellyfish.

Analysis of Microbiota in Bellflower Root, Platycodon grandiflorum, Obtained from South Korea

  • Kim, Daeho;Hong, Sanghyun;Na, Hongjun;Chun, Jihwan;Guevarra, Robin B.;Kim, You-Tae;Ryu, Sangryeol;Kim, Hyeun Bum;Lee, Ju-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.551-560
    • /
    • 2018
  • Bellflower root (Platycodon grandiflorum), which belongs to the Campanulaceae family, is a perennial grass that grows naturally in Korea, northeastern China, and Japan. Bellflower is widely consumed as both food and medicine owing to its high nutritional value and potential therapeutic effects. Since foodborne disease outbreaks often come from vegetables, understanding the public health risk of microorganisms on fresh vegetables is pivotal to predict and prevent foodborne disease outbreaks. We investigated the microbial communities on the bellflower root (n = 10). 16S rRNA gene amplicon sequencing targeting the V6-V9 regions of 16S rRNA genes was conducted via the 454-Titanium platform. The sequence quality was checked and phylogenetic assessments were performed using the RDP classifier implemented in QIIME with a bootstrap cutoff of 80%. Principal coordinate analysis was performed using the weighted Fast UniFrac distance. The average number of sequence reads generated per sample was 67,192 sequences. At the phylum level, bacterial communities from the bellflower root were composed primarily of Proteobacteria, Firmicutes, and Actinobacteria in March and September samples. Genera Serratia, Pseudomonas, and Pantoea comprised more than 54% of the total bellflower root bacteria. Principal coordinate analysis plots demonstrated that the microbial community of bellflower root in March samples was different from those in September samples. Potential pathogenic genera, such as Pantoea, were detected in bellflower root samples. Even though further studies will be required to determine if these species are associated with foodborne illness, our results indicate that the 16S rRNA gene-based sequencing approach can be used to detect pathogenic bacteria on fresh vegetables.

Oral Administration of β-Glucan and Lactobacillus plantarum Alleviates Atopic Dermatitis-Like Symptoms

  • Kim, In Sung;Lee, Seung Ho;Kwon, Young Min;Adhikari, Bishnu;Kim, Jeong A;Yu, Da Yoon;Kim, Gwang Il;Lim, Jong Min;Kim, Sung Hak;Lee, Sang Suk;Moon, Yang Soo;Choi, In Soon;Cho, Kwang Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1693-1706
    • /
    • 2019
  • Atopic dermatitis (AD) is a chronic inflammatory skin disease of mainly infants and children. Currently, the development of safe and effective treatments for AD is urgently required. The present study was conducted to investigate the immunomodulatory effects of yeast-extracted β-1,3/1,6-glucan and/or Lactobacillus plantarum (L. plantarum) LM1004 against AD-like symptoms. To purpose, β-1,3/1,6-glucan and/or L. plantarum LM1004 were orally administered to AD-induced animal models of rat (histamine-induced vasodilation) and mouse (pruritus and contact dermatitis) exhibiting different symptoms of AD. We then investigated the treatment effects on AD-like symptoms, gene expression of immune-related factors, and gut microbiomes. Oral administration of β-1,3/1,6-glucan (0.01 g/kg initial body weight) and/or 2 × 1012 cells/g L. plantarum LM1004 (0.01 g/kg initial body weight) to AD-induced animal models showed significantly reduced vasodilation in the rat model, and pruritus, edema, and serum histamine in the mouse models (p < 0.05). Interestingly, β-1,3/1,6-glucan and/or L. plantarum LM1004 significantly decreased the mRNA levels of Th2 and Th17 cell transcription factors, while the transcription factors of Th1 and Treg cells, galactin-9, filaggrin increased, which are indicative of enhanced immunomodulation (p < 0.05). Moreover, in rats with no AD induction, the same treatments significantly increased the relative abundance of phylum Bacteroidetes and the genus Bacteroides. Furthermore, bacterial taxa associated with butyrate production such as, Lachnospiraceae and Ruminococcaceae at family, and Roseburia at genus level were increased in the treated groups. These findings suggest that the dietary supplementation of β-1,3/1,6-glucan and/or L. plantarum LM1004 has a great potential for treatment of AD as well as obesity in humans through mechanisms that might involve modulation of host immune systems and gut microbiota.

The Role of Protozoa in Feed Digestion - Review -

  • Jouany, J.P.;Ushida, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.1
    • /
    • pp.113-128
    • /
    • 1999
  • Protozoa can represent as half of the total rumen microbial biomass. Around 10 genera are generally present on the same time in the rumen. Based on nutritional aspects they can be divided in large entodiniomorphs, small entodiniomorphs and isotrichs. Their feeding behaviour and their enzymatic activities differ considerably. Many comparisons between defaunated and refaunated animals were carried out during the last two decades to explain the global role of protozoa at the ruminal or animal levels. It is now generally considered that a presence of an abundant protozoal population in the rumen has a negative effect on the amino acid (AA) supply to ruminants and contribute to generate more methane but, nevertheless, protozoa must not be considered as parasites. They are useful for numerous reasons. They stabilise rumen pH when animal are fed diets rich in available starch and decrease the redox potential of rumen digesta. Because cellulolytic bacteria are very sensitive to these two parameters, protozoa indirectly stimulate the bacterial cellulolytic activity and supply their own activity to the rumen microbial ecosystem. They could also supply some peptides in the rumen medium which can stimulate the growth of the rumen microbiota, but this aspect has never been considered in the past. Their high contribution to ammonia production has bad consequences on the urinary nitrogen excretion but means also that less dietary soluble nitrogen is necessary when protozoa are present. Changes in the molar percentages of VFA and gases from rumen fermentations are not so large that they could alter significantly the use of energy by animals. The answer of animals to elimination of protozoa (defaunation) depends on the balance between energy and protein needs of animals and the supply of nutrients supplied through the diet. Defaunation is useful in case of diets short in protein nitrogen but not limited in energy supply for animals having high needs of proteins.

Effect of Ground Chopi (Zanthoxylum piperitum) on Physicochemical Traits and Microbial Community of Chicken Summer Sausage during Manufacture

  • Utama, Dicky Tri;Park, Jongbin;Kim, Dong Soo;Kim, Eun Bae;Lee, Sung Ki
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.936-949
    • /
    • 2018
  • Changes in microbial community and physicochemical traits of chicken summer sausage made from spent layer thigh added with different level (0%, 0.1%, 0.3%, and 0.5% w/w) of ground chopi (Zanthoxylum piperitum) during manufacture were analyzed. The microbial community was profiled and analyzed by sequencing 16S rRNA gene using Illumina MiSeq. Samples were taken from raw sausage batter, after 15 h of fermentation, 8 h of cooking including cooling down, and 7 d of drying. The final pH of the sausage was reduced by the addition of ground chopi. However, no clear effect on water activity was observed. Ground chopi inhibited the development of red curing color after fermentation as it exhibited antimicrobial effect. However, the effect on species richness and microbial composition after cooking was unclear. Ground chopi delayed lipid oxidation during manufacture and the effect was dependent on the addition level. Fermentation reduced the species richness with a dominancy of lactic acid bacteria. The profile of microbiota in the raw batter was different from other stages, while the closest relationship was observed after cooking and drying. Proteobacteria was predominant, followed by Firmicutes and Bacteroidetes in raw samples. Firmicutes became dominating after fermentation and so forth, whereas other predominant phylum decreased. At genus level, unclassified Lactobacillales was the most abundant group found after fermentation and so forth. Therefore, the overall microbial composition aspects were mainly controlled during fermentation by the abundance of lactic acid bacteria, while bacterial counts and lipid oxidation were controlled by cooking and the addition of ground chopi.

Fecal Microflora of Korean Neonates (한국인 신생아의 분변 미생물 균총)

  • Lee, Seung-Gyu;Jeong, Seok-Geun;Oh, Mi-Hwa;Kim, Dong-Hun;Kang, Dae-Kyung;Lee, Wan-Kyu;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • Probiotic bacteria have been administered to neonates to serve as maturational stimuli for the developing gut and intestinal immune system, establish and develop the intestinal microbiota, and mediate host-microbe interactions; further, these bacteria have shown beneficial effects In the treatment and reduction of the risk of infectious diseases, necrotizing enterocolitis, and atopic disease. An LAB isolation project to identify effective lactic acid bacteria for Korean people is in progress. The average total counts of lactic acid bacteria, lactobacilli, bifidobacteria, and coliforms in the fecal samples from 2 provinces were estimated as 8.31, 5.98, 8.13, and 3.01 CFU/g. Additional samples from other provinces will be analyzed to examine the changes in the lactic bacterial counts according to the area, sex of the neonate, mode of delivery, and type of feeding. A database containing the 16S rDNA sequences and the ribosomal protein profile of all the lactic acid bacteria isolated from fecal samples will be constructed. For the effective use of probiotics, a number of clinical studies are needed to formulate guidelines for strain, subject, purpose, and dose.

  • PDF

Effect of caffeine on the antibacterial activity of Lactobacillus casei: caffeine and antibacterial activity of L. casei

  • Jang, Eunjeong;Park, Jin A;Kim, Young Ha;Kim, Ho
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.981-989
    • /
    • 2019
  • Coffee is a popular beverage worldwide, and the scale of consumption is growing rapidly. Many studies have shown that increased coffee consumption has various effects on human health, including beneficial effects on liver diseases, clinical type 2 diabetes, and Parkinson's disease. However, the influences of coffee or caffeine (a component of coffee) on the gut microbiota have not been examined in detail. Here, we tested whether caffeine could alter the antimicrobial activity of L. casei against E. coli. Interestingly, we found that treatment with 0.3 mg/mL caffeine increased the antimicrobial activity of L. casei against E. coli. This activity was not associated with the release of lactic acid but did appear to be related to a heat-labile factor present in the L. casei culture supernatant. Our analyses suggest that the putative antimicrobial factor found in the culture supernatant of L. casei treated with caffeine may be bacteriocin. Taken together, our results suggest that caffeine, which is an ingredient of coffee, increases the antimicrobial activity of L. casei against E. coli through the enhanced production of bacteriocin. These findings also suggest that coffee consumption affects the ability of beneficial bacteria to decrease pathogenic bacteria and/or prevent the progression of bacterial infection-associated diseases in the gut.

A highly efficient computational discrimination among Streptococcal species of periodontitis patients using 16S rRNA amplicons

  • Al-Dabbagh, Nebras N.;Hashim, Hayder O.;Al-Shuhaib, Mohammed Baqur S.
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Due to the major role played by several species of Streptococcus in the etiology of periodontitis, it is important to assess the pattern of Streptococcus pathogenic pathways within the infected subgingival pockets using a bacterial specific 16S rRNA fragment. From the total of 50 patients with periodontitis included in the study, only 23 Streptococcal isolates were considered for further analyses, in which their 16S rRNA fragments were amplified and sequenced. Then, a comprehensive phylogenetic tree was constructed and in silico prediction was performed for the observed Streptococcal species. The phylogenetic analysis of the subgingival Streptococcal species revealed a high discrimination power of the 16S rRNA fragment to accurately identify three groups of Streptococcus on the species level, including S. salivarius (14 isolates), S. anginosus (5 isolates), and S. gordonii (4 isolates). The employment of state-of-art in silico tools indicated that each Streptococcal species group was characterized with particular transcription factors that bound exclusively with a different 16S rRNA-based secondary structure. In conclusion, the observed data of the present study provided in-depth insights into the mechanism of each Streptococcal species in its pathogenesis, which differ in each observed group, according to the differences in the 16S rRNA secondary structure it takes, and the consequent binding with its corresponding transcription factors. This study paves the way for further interventions of the in silico prediction, with the main conventional in vitro microbiota identification to present an interesting insight in terms of the gene expression pattern and the signaling pathway that each pathogenic species follows in the infected subgingival site.