• 제목/요약/키워드: bacterial invasion

검색결과 75건 처리시간 0.036초

IH-901, AN INTESTINAL BACTERIAL METABOLITE DERIVED FROM THE PROTOPANAXADIOL GINSENOSIDE, HAS ANTI-TUMOR PROMOTING EFFECTS IN MOUSE SKIN.

  • Lee, Ji-Yoon;Chun, Kyung-Soo;Sung, Jong-Hwan;Surh, Young-Joon
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.139-140
    • /
    • 2001
  • Ginseng saponins (ginsenosides) have been regarded as principal components responsible for the majority of pharmacological activities exerted by ginseng. IH-901, an intestinal bacterial metabolite derived from the protopanaxadiol saponin of Panax ginseng C.A. Meyer, has been reported to have anti-tumor effects including inhibition of angiogenesis, invasion and metastasis, as well as induction of tumor cell apoptosis. (omitted)

  • PDF

Understanding Comprehensive Transcriptional Response of Salmonella enterica spp. in Contact with Cabbage and Napa Cabbage

  • Lee, Hojun;Kim, Seul I;Park, Sojung;Nam, Eunwoo;Yoon, Hyunjin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권11호
    • /
    • pp.1896-1907
    • /
    • 2018
  • Salmonellosis is commonly associated with meat and poultry products, but an increasing number of Salmonella outbreaks have been attributed to contaminated vegetables and fruits. Enteric pathogens including Salmonella enterica spp. can colonize diverse produce and persist for a long time. Considering that fresh vegetables and fruits are usually consumed raw without heat treatments, Salmonella contamination may subsequently lead to serious human infections. In order to understand the underlying mechanism of Salmonella adaptation to produce, we investigated the transcriptomics of Salmonella in contact with green vegetables, namely cabbage and napa cabbage. Interestingly, Salmonella pathogenicity island (SPI)-1 genes, which are required for Salmonella invasion into host cells, were up-regulated upon contact with vegetables, suggesting that SPI-1 may be implicated in Salmonella colonization of plant tissues as well as animal tissues. Furthermore, Salmonella transcriptomic profiling revealed several genetic loci that showed significant changes in their expression in response to vegetables and were associated with bacterial adaptation to unfavorable niches, including STM14_0818 and STM14_0817 (speF/potE), STM14_0880 (nadA), STM14_1894 to STM14_1892 (fdnGHI), STM14_2006 (ogt), STM14_2269, and STM14_2513 to STM14_2523 (cbi operon). Here, we show that nadA was required for bacterial growth under nutrient-restricted conditions, while the other genes were required for bacterial invasion into host cells. The transcriptomes of Salmonella in contact with cabbage and napa cabbage provided insights into the comprehensive bacterial transcriptional response to produce and also suggested diverse virulence determinants relevant to Salmonella survival and adaptation.

Bacterial Invasion in Periodontium

  • Cha, Joung-Dan;Kim, Hae-Kyoung;You, Yong-Ouk;Kim, Kang-Ju
    • 대한치주과학회:학술대회논문집
    • /
    • 대한치주과학회 2000년도 제40회 종합학술대회 연제초록
    • /
    • pp.158-158
    • /
    • 2000
  • PDF

Porphyromonas Gingivalis Invasion of Human Aortic Smooth Muscle Cells

  • Lee, Seoung-Man;Lee, Hyeon-Woo;Lee, Jin-Yong
    • International Journal of Oral Biology
    • /
    • 제33권4호
    • /
    • pp.163-177
    • /
    • 2008
  • Periodontal disease, a form of chronic inflammatory bacterial infectious disease, is known to be a risk factor for cardiovascular disease (CVD). Porphyromonas gingivalis has been implicated in periodontal disease and widely studied for its role in the pathogenesis of CVD. A previous study demonstrating that periodontopathic P. gingivalis is involved in CVD showed that invasion of endothelial cells by the bacterium is accompanied by an increase in cytokine production, which may result in vascular atherosclerotic changes. The present study was performed in order to further elucidate the role of P. gingivalis in the process of atherosclerosis and CVD. For this purpose, invasion of human aortic smooth muscle cells (HASMC) by P. gingivalis 381 and its isogenic mutants of KDP150 ($fimA^-$), CW120 ($ppk^-$) and KS7 ($relA^-$) was assessed using a metronidazole protection assay. Wild type P. gingivalis invaded HASMCs with an efficiency of 0.12%. In contrast, KDP150 failed to demonstrate any invasive ability. CW120 and KS7 showed relatively higher invasion efficiencies, but results for these variants were still negligible when compared to the wild type invasiveness. These results suggest that fimbriae are required for invasion and that energy metabolism in association with regulatory genes involved in stress and stringent response may also be important for this process. ELISA assays revealed that the invasive P. gingivalis 381 increased production of the proinflammatory cytokine interleukin (IL)-$1{\beta}$ and the chemotactic cytokines (chemokine) IL (interleukin)-8 and monocyte chemotactic (MCP) protein-1 during the 30-90 min incubation periods (P<0.05). Expression of RANTES (regulation upon activation, normal T cell expressed and secreted) and Toll-like receptor (TLR)-4, a pattern recognition receptor (PRR), was increased in HASMCs infected with P. gingivalis 381 by RT-PCR analysis. P. gingivalis infection did not alter interferon-$\gamma$-inducible protein-10 expression in HASMCs. HASMC nonspecific necrosis and apoptotic cell death were measured by lactate dehydrogenase (LDH) and caspase activity assays, respectively. LDH release from HASMCs and HAMC caspase activity were significantly higher after a 90 min incubation with P. gingivalis 381. Taken together, P. gingivalis invasion of HASMCs induces inflammatory cytokine production, apoptotic cell death, and expression of TLR-4, a PRR which may react with the bacterial molecules and induce the expression of the chemokines IL-8, MCP-1 and RANTES. Overall, these results suggest that invasive P. gingivalis may participate in the pathogenesis of atherosclerosis, leading to CVD.

Host and Non-Host Disease Resistances of Kimchi Cabbage Against Different Xanthomonas campestris Pathovars

  • Lee, Young-Hee;Hong, Jeum-Kyu
    • The Plant Pathology Journal
    • /
    • 제28권3호
    • /
    • pp.322-329
    • /
    • 2012
  • This study was conducted to investigate host and non-host disease resistances of kimchi cabbage plants to bacterial infection. Kimchi cabbage leaves responded differently to infections with a virulent strain of Xanthomonas campestris pv. campestris (Xcc) 8004 and two strains (85-10 and Bv5-4a.1) of non-host bacteria X. campestris pv. vesicatoria (Xcv). Non-host bacteria triggered a rapid tissue collapse of the leaves showing as brown coloration at the infected sites, highly increased ion leakage, lipid peroxidation and accumulation of UV-stimulated autofluorescence materials at the inoculated sites. During the observed interactions, bacterial proliferations within the leaf tissues were significantly different. Bacterial number of Xcc 8004 progressively increased within the inoculated leaf tissues over time, while growths of two non-host bacteria Xcv strains were distinctly limited. Expressions of pathogenesis-related genes, such as GST1, PR1, BGL2, VSP2, PR4 and LOX2, were differentially induced by host and non-host bacterial infections of X. campestris pathovars. These results indicated that rapid host cellular responses to the non-host bacterial infections may contribute to an array of defense reactions to the non-host bacterial invasion.

Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion

  • Cho, Jin Ah;Park, Eunmi
    • Nutrition Research and Practice
    • /
    • 제9권2호
    • /
    • pp.117-122
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Curcumin, a major component of the Curcuma species, contains antioxidant and anti-inflammatory properties. Although it was found to induce apoptosis in cancer cells, the functional role of curcumin as well as its molecular mechanism in anti-inflammatory response, particularly in intestinal cells, has been less investigated. The intestine epithelial barrier is the first barrier and the most important location for the substrate coming from the lumen of the gut. SUBJECTS/METHODS: We administered curcumin treatment in the human intestinal epithelial cell lines, T84 and Caco-2. We examined endoplasmic reticulum (ER) stress response by thapsigargin, qPCR of XBP1 and BiP, electrophysiology by wild-type cholera toxin in the cells. RESULTS: In this study, we showed that curcumin treatment reduces ER stress and thereby decreases inflammatory response in human intestinal epithelial cells. In addition, curcumin confers protection without damaging the membrane tight junction or actin skeleton change in intestine epithelial cells. Therefore, curcumin treatment protects the gut from bacterial invasion via reduction of ER stress and anti-inflammatory response in intestinal epithelial cells. CONCLUSIONS: Taken together, our data demonstrate the important role of curcumin in protecting the intestine by modulating ER stress and inflammatory response post intoxication.

Phytotherapy of experimentally induced gill inflammation with Aeromonas hydrophila infection in goldfish, Carassius auratus

  • Harikrishnan, Ramasamy;Kim, Ju-Sang;Balasundaram, Chellam;Heo, Moon-Soo
    • 한국어병학회지
    • /
    • 제21권2호
    • /
    • pp.93-105
    • /
    • 2008
  • Goldfish, Carassius auratus (wt 13 g) was intramuscularly infected with Aeromonas hydrophila (4.3x106 cfu / ml). Infected gills showed edematous lamellae with bacterial invasion into the capillaries and gill congestion on 12th day. By 24th day post-infection, histological analysis revealed irregular aggregates of macrophages in gill lamellae, large amount of mucus cells, gill lamellae edematous with bacterial invasion into capillaries, gill congestion and damaged gill epithelium with hyperplasia. Inflammation of the gill filament and hemorrhage globe was associated with the development of severe necrosis on the 36th day in the infected fishes. In infected and herbal treated fish the regenerative responses like fibrosis and infiltration of the leucocytes (neutrophils and monocytes) occurred on 12th day; moderate hypertrophy in the gills was noticed on the 36th day. These results suggest that phytotherapy ensures better protection and regenerative response against A. hydrophila infection in goldfish, C. auratus.

Emodin Successfully Inhibited Invasion of Brucella abortus Via Modulting Adherence, Microtubule Dynamics and ERK Signaling Pathway in RAW 264.7 Cells

  • Huy, Tran Xuan Ngoc;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Arayan, Lauren Togonon;Son, Vu Hai;Min, Wongi;Lee, Hu Jang;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권10호
    • /
    • pp.1723-1729
    • /
    • 2018
  • The aim of this work is to investigate the protective efficacy of emodin, an active, naturally-occurring anthraquinone derivative of several traditional Chinese herbs, against Brucella abortus infection in macrophages. Brucella were incubated with different concentrations of emodin and showed that bacterial survival rates were markedly reduced in a dose-dependent manner at increasing incubation time points. Through bacterial infection assay, the highest non-cytotoxic concentration of emodin demonstrated attenuated invasion of Brucella into macrophages, however it did not inhibit the growth of these pathogens within the host cells. On the other hand, emodin effectively decreased the number of bacteria that adhered to host cells, which indicated its potential as an anti-adhesin agent. Furthermore, using immunoblotting and FACS assay for detecting MAPK signaling proteins and F-actin polymerization, respectively, the results showed that the emodin-incubated cells displayed modest reduction in the phosphorylation levels of ERK1/2 and inhibition of F-actin polymerization as compared to control cells. These findings indicate the potential use of emodin as a naturally-occurring alternative method for the prevention of animal brucellosis although this requires confirmation of safe clinical doses.

도마도 암종내 Agrobacterium tumefaciens의 동태에 대하여 (Electron microscope study on Agrobacterium tumefaciens in tomato tumor)

  • 윤권상;이민재;하영칠
    • 미생물학회지
    • /
    • 제10권1호
    • /
    • pp.41-50
    • /
    • 1972
  • The tomato plant, Lycopersicon esculentum Mill, was inoculated with tumor inducing strain, $A_6K_1$, of Agrobacterium tumefaciens and its produced tumors were examined with the electron microscope. A number of bacteria are usually detected in the intercellular region of the host plant, and it is observed that the host cytoplasm is readily destroyed in the region where the bacterial invasion occurred. Some of the bacteria in the host tissues are enclosed with the single unit membranes, in other locations lots of bacteroids were examined and the bacterial lysis is generally observed in those bacteroids. The bacterial movement in the tumor tissue and some peculiar relationships between the pathogens and the host plant are discussed.

  • PDF

황색포도알균의 감염에 따른 세포 내에서의 균의 증식과 Matrix Metalloproteinase (MMP)의 역할 (Roles of Matrix Metalloproteinases on Intracellular Staphylococcus aureus Growth in Bronchial Epithelial Cell)

  • 민보람;이영미;박재석;최원일;권건영
    • Tuberculosis and Respiratory Diseases
    • /
    • 제64권1호
    • /
    • pp.22-27
    • /
    • 2008
  • 연구배경: 본 연구에서는 황색포도알균이 숙주세포 내로 침입하여 증식하는 정도를 관찰하고자 한다. 이때 세포 외 바탕 단백질의 변화가 수반될 것으로 가설을 설정하고, 이러한 변화에 영향을 미칠 것으로 생각되는 matrix metalloproteinase (MMP)의 발현과 역할에 대해 연구하고자 하였다. 방법: 황색포도알균은 $10^6{\sim}10^7CFU/ml$$10^5$개의 기관지상피세포인 BEAS-2B 세포에 2시간 동안 침입시킨다. 이후 세척으로 세포 밖에 있는 황색포도알균을 제거한 후, BEAS-2B 세포를 다양한 시간 동안(4, 6, 8, 12 시간) 배양한 후 황색포도알균의 집락수(CFU/ml)를 측정하였고, 단백질을 분리하여 세포 외 바탕단백질의 발현 정도와 MMP의 활성도를 측정하였다. 또한 MMP 억제제인 GM6001을 전처치한 후 황색포도알균을 세포에 침입시킨 후 세포 내에서의 균의 집락수 및 세포 외 바탕단백질의 변화를 관찰하였다. 결과: 황색포도알균의 집락을 측정한 결과 4시간과 12시간을 비교해 볼 때 MOI가 증가할수록, 감염시킨 시간이 길수록 숙주세포 내로 침입이 유의하게 증가하였다. BEAS-2B 세포에서 황색포도알균을 침입시킨 시간이 길수록, MOI가 증가할수록 MMP 2 및 MMP 9의 활성도와 dysadherin의 발현은 증가하였고, 이와는 대조적으로 E-cadherin의 발현은 감소하였다. MMP억제제인 GM6001을 전 처치 한 결과 황색포도알균의 세포 내 침입을 유의하게 감소시켰다. 결론: 황색포도알균이 기관지 상피세포 내로 침입할 때 dysadherin 및 E-cadherin 같은 세포 외 바탕 단백질의 변화를 동반하며, MMP 활성도가 균의 세포 내 침입에 관여하는 것으로 보인다.