• Title/Summary/Keyword: bacterial identification

Search Result 541, Processing Time 0.022 seconds

Screening and Identification of Antifungal Bacillus sp. #72 against the Pathogenic Stem-end Rot of Kiwi Fruit (참다래 꼭지썩음병을 일으키는 Diaporthe actinidiae을 억제하는 길항성 Bacillus sp. #72의 분리 및 동정)

  • Cho, Jung-Il;Cho, Ja-Yong;Park, Yong-Seo;Yang, Seung-Yul;Heo, Buk-Gu
    • The Korean Journal of Community Living Science
    • /
    • v.18 no.2
    • /
    • pp.241-246
    • /
    • 2007
  • This study was conducted to select and screen for an antifungal bacterial strain showing pathogen inhibitory activity against Diaporthe actinidiae, which causes stem-end rot in kiwi fruit. Four bacterial strains were isolated which strongly inhibit Diaporthe actinidiae from among two hundred and fifty bacterial strains screened from the soil where kiwi fruit were grown. By co-culturing bacterial strain #72 and the pathogen causing the stem-end rot of kiwi fruit, bacterial strain #72 showed 81.0% antifungal activity against Diaporthe actinidiae. Bacterial strain #72 was identified to be from the genus Bacillus sp. based on morphological and biochemical characterization. The bacterialization of culture broth for Bacillus sp. #72 which was sterilized at $121^{\circ}C$ for 15 minutes and than purified by $0.45{\mu}m$ membrane filter showed almost all of the antagonistic activity against Diaporthe actinidiae. We have also confirmed that in vitro treatment of Bacillus sp. #72 cultured in SD+B+P(sugar 5%, soy sauce 3%, beef extract 0.2%, peptone 0.2%) medium efficiently inhibited the growth of Diaporthe actinidiae responsible for stem-end rot in kiwi fruit.

  • PDF

Differences in Colistin-resistant Acinetobacter baumannii Clinical Isolates Between Patients With and Without Prior Colistin Treatment

  • Park, Yu Jin;Hong, Duck Jin;Yoon, Eun-Jeong;Kim, Dokyun;Choi, Min Hyuk;Hong, Jun Sung;Lee, Hyukmin;Yong, Dongeun;Jeong, Seok Hoon
    • Annals of Laboratory Medicine
    • /
    • v.38 no.6
    • /
    • pp.545-554
    • /
    • 2018
  • Background: The increasing morbidity and mortality rates associated with Acinetobacter baumannii are due to the emergence of drug resistance and the limited treatment options. We compared characteristics of colistin-resistant Acinetobacter baumannii (CR-AB) clinical isolates recovered from patients with and without prior colistin treatment. We assessed whether prior colistin treatment affects the resistance mechanism of CR-AB isolates, mortality rates, and clinical characteristics. Additionally, a proper method for identifying CR-AB was determined. Methods: We collected 36 non-duplicate CR-AB clinical isolates resistant to colistin. Antimicrobial susceptibility testing, Sanger sequencing analysis, molecular typing, lipid A structure analysis, and in vitro synergy testing were performed. Eleven colistin-susceptible AB isolates were used as controls. Results: Despite no differences in clinical characteristics between patients with and without prior colistin treatment, resistance-causing genetic mutations were more frequent in isolates from colistin-treated patients. Distinct mutations were overlooked via the Sanger sequencing method, perhaps because of a masking effect by the colistin-susceptible AB subpopulation of CR-AB isolates lacking genetic mutations. However, modified lipid A analysis revealed colistin resistance peaks, despite the population heterogeneity, and peak levels were significantly different between the groups. Conclusions: Although prior colistin use did not induce clinical or susceptibility differences, we demonstrated that identification of CR-AB by sequencing is insufficient. We propose that population heterogeneity has a masking effect, especially in colistin non-treated patients; therefore, accurate testing methods reflecting physiological alterations of the bacteria, such as phosphoethanolamine-modified lipid A identification by matrix-assisted laser desorption ionization-time of flight, should be employed.

Identification of the bacterial composition in the rockworm gut and biofloc-fed adult gut flora beneficial for integrated multitrophic aquaculture

  • Jung, Hyun Yi;Kim, Chang Hoon;Kim, Joong Kyun
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.9
    • /
    • pp.297-310
    • /
    • 2021
  • The rockworm gut flora was identified at each growth stage to elucidate the composition of the bacterial community. The source material was Marphysa sanguinea fed regular feed and fed biofloc at the adult stage in parallel. The systematic bacterial community composition was determined based on the next-generation sequencing method, and alpha diversity and beta diversity were conducted to access the species diversity within and between the bacterial communities, respectively. The composition of the gut flora changed considerably as the rockworms developed. The shift in the gut flora was confirmed at the phylum, family, and genera level of the bacterial communities. The Vibrio species associated with high rockworm mortality occupied 7.7% of the gut flora at the larval stage; however, they disappeared in the healthy adult gut. Moreover, different gut flora was observed between adults fed regular feed and those fed biofloc. Specifically in the biofloc-fed adult gut, several immune relevant and water-purifying bacteria were detected. The biofloc-fed adult gut flora could decompose and mineralize organic sediment, and thus be effectively utilized for integrated multitrophic aquaculture. The Venn diagram revealed that only two bacterial species were shared throughout all growth stages, and the biofloc-fed adults exhibited the highest diversity within the bacterial community.

Novel Diagnostic Algorithm Using tuf Gene Amplification and Restriction Fragment Length Polymorphism is Promising Tool for Identification of Nontuberculous Mycobacteria

  • Shin, Ji-Hyun;Cho, Eun-Jin;Lee, Jung-Yeon;Yu, Jae-Yon;Kang, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.323-330
    • /
    • 2009
  • Nontuberculous mycobacteria (NTM) are a major cause of opportunistic infections in immunocompromised patients, making the reliable and rapid identification of NTM to the species level very important for the treatment of such patients. Therefore, this study evaluated the usefulness of the novel target genes tuf and tmRNA for the identification of NTM to the species level, using a PCRrestriction fragment length polymorphism analysis (PRA). A total of 44 reference strains and 17 clinical isolates of the genus Mycobacterium were used. The 741 bp or 744 bp tuf genes were amplified, restricted with two restriction enzymes (HaeIII/MboI), and sequenced. The tuf gene-PRA patterns were compared with those for the tmRNA (AvaII), hsp65 (HaeIII/HphI), rpoB (MspI/HaeIII), and 16S rRNA (HaeIII) genes. For the reference strains, the tuf gene-PRA yielded 43 HaeIII patterns, of which 35 (81.4%) showed unique patterns on the species level, whereas the tmRNA, hsp65, rpoB, and 16S rRNA-PRAs only showed 10 (23.3%), 32 (74.4%), 19 (44.2%), and 3 (7%) unique patterns after single digestion, respectively. The tuf gene-PRA produced a clear distinction between closely related NTM species, such as M. abscessus (557-84-58) and M. chelonae (477-84-80-58), and M. kansasii (141-136-80-63-58-54-51) and M. gastri (141-136-117-80-58-51). No difference was observed between the tuf-PRA patterns for the reference strains and clinical isolates. Thus, a diagnostic algorithm using a tuf gene-targeting PRA is a promising tool with more advantages than the previously used hsp65, rpoB, and 16S rRNA genes for the identification of NTM to the species level.

Isolation and Identification of Bacteria Involved with Biomineralization at B Mine Sludge in Mexico (멕시코 B 광산 슬러지에 존재하는 생물학적 광물화 미생물의 특성에 관한 연구)

  • Kim, Joon-Ha;Yun, Seong-Yeol;Park, Yoon Soo;Lee, Jai-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.41-51
    • /
    • 2017
  • Microbial processes that bind heavy metals and form minerals are widespread, and they represent a basic aspect of biogeochemistry. Some microorganisms can crystallize minerals by secreting a specific enzyme. In particular, calcite ($CaCO_3$) precipitation is an important part of biomineralization, and has been studied extensively because of its wide application in civil engineering technology. This process provides an effective way to stabilize heavy metals within a relatively stable crystal phase. In this study, biomineralization of calcite by three urea-hydrolyzing indigenous bacterial strains was investigated by microbiological analyses. Three bacterial strains were isolated from the sludge of B mine in Mexico and each bacterial strain was identified by the cellular fatty acid composition and 16S rRNA partial sequencing analysis. The results of the identification analysis showed that these strains were closest to Sporosarcina pasteurii, Kurthia gibsonii, and Paenibacillus polymyxa. We found that the optimum conditions for growth of these indigenous bacteria were $30-40^{\circ}C$ and pH range of 7-8. Microbiological analyses showed the possibility that the bioaccumulated heavy metals ions were deposited around the cell as crystalline carbonate minerals under the optimum conditions. The findings of our study suggest that the indigenous bacterial strains play an important role in heavy metal immobilization.

Application of DNA Microarray Technology to Molecular Microbial Ecology

  • Cho Jae-Chang
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.22-26
    • /
    • 2002
  • There are a number of ways in which environmental microbiology and microbial ecology will benefit from DNA micro array technology. These include community genome arrays, SSU rDNA arrays, environmental functional gene arrays, population biology arrays, and there are clearly more different applications of microarray technology that can be applied to relevant problems in environmental microbiology. Two types of the applications, bacterial identification chip and functional gene detection chip, will be presented. For the bacterial identification chip, a new approach employing random genome fragments that eliminates the disadvantages of traditional DNA-DNA hybridization is proposed to identify and type bacteria based on genomic DNA-DNA similarity. Bacterial genomes are fragmented randomly, and representative fragments are spotted on a glass slide and then hybridized to test genomes. Resulting hybridization profiles are used in statistical procedures to identify test strains. Second, the direct binding version of microarray with a different array design and hybridization scheme is proposed to quantify target genes in environmental samples. Reference DNA was employed to normalize variations in spot size and hybridization. The approach for designing quantitative microarrays and the inferred equation from this study provide a simple and convenient way to estimate the target gene concentration from the hybridization signal ratio.

  • PDF

Identification and Antimicrobial Susceptibility of Bacteria Isolated from Dogs with Chronic Otitis Externa

  • Park, Soyoung;Bae, Seulgi;Kim, Juntaek;Oh, Taeho
    • Journal of Veterinary Clinics
    • /
    • v.34 no.1
    • /
    • pp.23-26
    • /
    • 2017
  • Otitis externa (OE) is an inflammatory disease of the externa auditory meatus that occurs commonly in dogs. Antimicrobial susceptibility tests should be performed in case of chronic OE for successful treatment. In this study, identification and antimicrobial susceptibility test of bacteria isolated from dogs with chronic OE was performed. From 60 dogs with chronic OE, 60 bacterial species were identified. The most frequently identified species were Staphylococcus spp. (51%), followed by Pseudomonas spp. (15%) and Enterococcus spp. (14%). A single bacterial infection and multiple bacterial infections were observed in 67.5% and 32.5%, respectively. Staphylococcus spp. was susceptible to imipenum. Pseudomonas spp. was found to be susceptible to amikacin, cefepime, imipenum and piperacillin-tazobactam. Enterococcus spp. was susceptible to ampicillin-sulbactam, imipenum and piperacillin-tazobactam. Imipenum was highly susceptible antibiotic against both Gram-positive and negative bacteria whereas aztreonam and vancomycin were highly resistant. These results could suggest the optimal choice of antimicrobial agents for canine OE treatment.

Identification of a Bacteria-Specific Binding Protein from the Sequenced Bacterial Genome

  • Kong, Minsuk;Ryu, Sangryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.38-43
    • /
    • 2016
  • Novel and specific recognition elements are of central importance in the development of a pathogen detection method. Here, we describe a simple method for identifying the cell-wall binding domain (CBD) from a sequenced bacterial genome employing homology search for phage lysin genes. A putative CBD (CPF369_CBD) was identified from a genome of Clostridium perfringens type strain ATCC 13124, and its function was studied with the CBD-GFP fusion protein recombinantly expressed in Escherichia coli. Fluorescence microscopy showed the specific binding of the fusion protein to C. perfringens cells, which demonstrates the potential of this method for the identification of novel bioprobes for specific detection of pathogenic bacteria.

Isolation and Identification of Antifungal Bacteria on Blue Mold in Apple (사과 푸른곰팡이병의 길항미생물의 분리 및 동정)

  • 이인선;조정일
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.2
    • /
    • pp.167-171
    • /
    • 1999
  • In order to screen the antagonistic bacteria which inhibit the growth of the apple pathogen, Penicillum expansum, we isolated an effective bacterial strain and investigated into the antifungal activity of the antagonist and it's identification. The eleven strains of bacteria which strongly inhibited P. expansum were isolated from the nature, and the best antagonistic bacterial strain designated as CH142, was selected. The antagonistic strain CH142 was identified to be the genus Bacillus subtilis based on morphological and biochemical characterization. The CH142 showed 55.9% of antifungal activity against the growth of P. expansum. By the treatment of the culture broth and the heat treated culture filtrate of it, the B. subtilis CH142 showed 90% and 15% of antifungal activity, respectively.

  • PDF