• Title/Summary/Keyword: bacterial grain rot of rice

Search Result 29, Processing Time 0.023 seconds

Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage

  • Pedraza, Luz Adriana;Bautista, Jessica;Uribe-Velez, Daniel
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.393-402
    • /
    • 2018
  • Rice world production is affected due to the growing impact of diseases such as bacterial panicle blight, produced by Burkholderia glumae. The pathogen-induced symptoms include seedling rot, grain rot and leafsheath browning in rice plants. It is currently recognized the entrance of this pathogen to the plant, from infected seeds and from environmental sources of the microorganism. However, it is still not fully elucidated the dynamics and permanence of the pathogen in the plant, from its entry until the development of disease symptoms in seedlings or panicles. In this work it was evaluated the infection of B. glumae rice plants, starting from inoculated seeds and substrates, and its subsequent monitoring after infection. Various organs of the plant during the vegetative stage and until the beginning of the reproductive stage, were evaluated. In both inoculation models, the bacteria was maintained in the plant as an endophyte between $1{\times}10^1$ and $1{\times}10^5cfu$ of B. $glumae.g^{-1}$ of plant throughout the vegetative stage. An increase of bacterial population towards initiation of the panicle was observed, and in the maturity of the grain, an endophyte population was identified in the flag leaf at $1{\times}10^6cfu$ of B. $glumae.g^{-1}$ fresh weight of rice plant, conducting towards the symptoms of bacterial panicle blight. The results found, suggest that B. glumae in rice plants developed from infected seeds or from the substrate, can colonize seedlings, establishing and maintaining a bacterial population over time, using rice plants as habitat to survive endophyticly until formation of bacterial panicle blight symptoms.

Micro- Weather Factors during Rice Heading Period Influencing the Development of Rice Bacterial Grain Rot (세균성벼알마름병 발병에 미치는 벼 출수기의 미기상 요인)

  • Lee, Yong-Hwan;Ko, Sug-Ju;Cha, Kwang-Hong;Choi, Hyeong-Gug;Lee, Doo-Goo;Noh, Tae-Hwan;Lee, Seung-Don;Han, Kwang-Seop
    • Research in Plant Disease
    • /
    • v.10 no.3
    • /
    • pp.167-174
    • /
    • 2004
  • To make the forecasting model of rice bacterial grain rot (RGBR) using the statistical procedures with SAS(Statistical Analysis System) based on micro-weather factors during heading period of rice, 21 rice varieties having the different heading time (40% panicles headed) were planted at 30 May and 15 June in Naju. Heading time and diseased panicles were investigated from July to August in 1998. RGBR mainly occurred on varieties headed from 29 July to 19 August, but not on varieties headed after 22 August. RGBR was highly correlated with diurnal temperature during 7 days (r =-0.871 **) and 10 days (r =-0.867**) and minimum relative humidity during 15 days from 3 days before heading time. After examining the models with several ways ($R^2$, Adjusted $R^2$, MSE), one equations were selected: Y =92.83 - 2.43Tavr + 1.88Tmin - 1.04RHavr + 0.37RHmin + 0.43RD - 3.68WS ($R^2$=0.824) using six variables of average and minimum temperature (Tavr and Tmin), average and minimum relative humidity (RHavr and RHmin), rainy days (RD), and wind speed (WS) during 7 days from 3 days before to 3 days after heading time.

Simultaneous Detection of Three Bacterial Seed-Borne Diseases in Rice Using Multiplex Polymerase Chain Reaction

  • Kang, In Jeong;Kang, Mi-Hyung;Noh, Tae-Hwan;Shim, Hyeong Kwon;Shin, Dong Bum;Heu, Suggi
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.575-579
    • /
    • 2016
  • Burkholderia glumae (bacterial grain rot), Xanthomonas oryzae pv. oryzae (bacterial leaf blight), and Acidovorax avenae subsp. avenae (bacterial brown stripe) are major seedborne pathogens of rice. Based on the 16S and 23S rDNA sequences for A. avenae subsp. avenae and B. glumae, and transposase A gene sequence for X. oryzae pv. oryzae, three sets of primers had been designed to produce 402 bp for B. glumae, 490 bp for X. oryzae, and 290 bp for A. avenae subsp. avenae with the $63^{\circ}C$ as an optimum annealing temperature. Samples collected from naturally infected fields were detected with two bacteria, B. glumae and A. avenae subsp. avenae but X. oryzae pv. oryzae was not detected. This assay can be used to identify pathogens directly from infected seeds, and will be an effective tool for the identification of the three pathogens in rice plants.

Inhibitory Effects of Resveratrol and Piceid against Pathogens of Rice Plant, and Disease Resistance Assay of Transgenic Rice Plant Transformed with Stilbene Synthase Gene

  • Yu, Sang-Mi;Lee, Ha Kyung;Jeong, Ui-Seon;Baek, So Hyeon;Noh, Tae-Hwan;Kwon, Soon Jong;Lee, Yong Hoon
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Resvestrol has been known to inhibit bacterial and fungal growth in vitro, and can be accumulated in plant to concentrations necessary to inhibit microbial pathogens. Hence, stilbene synthase gene has been used to transform to synthesize resveratrol in heterologous plant species to enhance resistance against pathogens. In the present study, we investigated the antimicrobial activities of resveratrol and piceid to bacterial and fungal pathogens, which causing severe damages to rice plants. In addition, disease resistance was compared between transgenic rice varieties, Iksan 515 and Iksan 526 transformed with stlibene synthase gene and non-transgenic rice varieties, Dongjin and Nampyeong. Minimum inhibitory concentration of resveratrol for Burkolderia glumae was 437.5 ${\mu}M$, and the mycelial growth of Biplaris oryzae was slightly inhibited at concentration of 10 ${\mu}M$. However, other bacterial and fungal pathogens are not inhibited by resveratrol and piceid. The expression of the stilbene synthase gene in Iksan 515 and Iksan 526 did not significantly enhanced resistance against bacterial grain rot, bacterial leaf blight, sheath blight, and leaf blight. This study is the first report on the effect of resveratrol and piceid against pathogens of rice plant, and changes of disease resistance of transgenic rice plants transformed with stilbene synthase gene.

Review of Disease Incidences of Major Crops of the South Korea in 2005 (2005년 주요 농작물 병해 발생개황)

  • Myung, Inn-Shik;Hong, Sung-Kee;Lee, Young-Kee;Choi, Hyo-Won;Shim, Hong-Sik;Park, Jin-Woo;Park, Kyung-Seok;Lee, Sang-Yeop;Lee, Seong-Don;Lee, Su-Heon;Choi, Hong-Su;Kim, Yong-Gi;Shin, Dong-Bum
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.153-157
    • /
    • 2006
  • In 2005, average temperature was lower, and average rainfall was less than those of previous year. The diseases of rice, barley, pepper, chinese melon, apple and oriental pear were surveyed. Bacterial blight, bacterial grain rot, and panicle disease of rice, black rot of pear, and white rot and bitter rot of apple were severe. Especially, brown rot of rice occurred four times higher than those of previous year. Panicle blight of rice increased about 3 times, compared with the previous year, presumed that the higher rainy days, rainfall and RH promoted spread of the fungal pathogens to panicles of rice. The diseases of rice leaf blast, sudden wilt syndrome, downy mildew and powdery mildew of chinese melon in plastic greenhouse, and virus diseases of hot pepper occurred distinctly less than those of the previous year. Another diseases surveyed occurred similar or less.