• Title/Summary/Keyword: bacterial challenge

Search Result 97, Processing Time 0.026 seconds

Antibiofilm Activity of a Curcuma zedoaria Rosc Rhizome Extract against Methicillin-Resistant and Susceptible Staphylococcus aureus

  • Tabunhan, Sompong;Tungsukruthai, Parunkul
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.193-201
    • /
    • 2022
  • Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) are major causes of hospital- and community-acquired infections. The treatment of biofilm-related infections caused by these bacteria is a global healthcare challenge. Therefore, the development of alternative therapeutics is required. An essential oil extracted from Curcuma zedoaria (CZ) Rosc, also known as white turmeric, has been reported to possess various antimicrobial activities. In the present study, we evaluated the antibiofilm activities of an ethanolic extract of the CZ rhizome against MRSA and MSSA. The results showed that the CZ extract with the highest sub-minimum inhibitory concentration (sub-MIC), 1/2 MIC (0.312 mg/ml), significantly inhibited biofilm production by up to 80-90% in both tested strains. Subsequently, we evaluated the ability of the CZ extract to prevent cell-surface attachment to a 96-well plate and extracellular DNA (eDNA) release from the biofilm. The CZ extract demonstrated an inhibitory effect on bacterial attachment and eDNA release from the biofilm biomass. The CZ extract may inhibit biofilm formation by preventing eDNA release and cell-surface attachment. Therefore, this CZ extract is a potential candidate for the development of alternative treatments for biofilm-associated MRSA and MSSA infections.

Fluctuation of Temperature Induces Pathogenicity of Streptococcus iniae and Changes of Immunology Related Genes of Korean Rockfish, Sebastes schlegeli

  • EunYoung Min;Seon-Myeong Jeong;Hyun-Ja Han;Miyoung Cho
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.4
    • /
    • pp.420-429
    • /
    • 2023
  • This study was designed to examine the immune response in Korean rockfish during water temperature fluctuation and to elucidate the factors contributing to streptococcal pathogenesis in cultured Korean rockfish, S. schlegeli. We investigated cumulative mortality against Streptococcus iniae (FP5228 strain) infection in the exposed Korean rockfish (39.7±5.8 g) to environmentally relevant temperature (Control, 23℃; High temperature, 28℃ and 23℃ and 28℃ with 12 hours interval exchange, 23↔28℃) for 48 hours. Also, the expression of the mRNA related to the immune response genes (heat shock protein 70, interleukin1β, lysozyme g-type and thioredoxin-like 1) were measured in spleen and head kidney by real-time PCR analysis in the exposed fish to thermal stress. In this study, the combined stress with bacterial challenge in fishes exposed to thermal stress lowered the survival rate than that of control (23℃). The cumulative mortality in the group of control, 28℃ and 23↔28℃ was 24%, 24% and 40% (P<0.05), respectively. Also, thermal stress modulated the mRNA level of immune related genes; heat shock protein 70, interleukin-1β, lysozyme g-type and thioredoxin-like 1 in Korean rockfish. The present study indicates that a high and sudden water temperature change affect immune responses and reduce the disease resistance in Korean rockfish.

Effects of Citurs unshiu Markovich on growth performance and bactericidal activity of nile tilapia Oreochromis niloticus (진피(Citurs unshiu Markovich)추출물이 틸라피아(Oreochromis niloticus)의 성장률 및 항균효과에 미치는 영향)

  • Bang, Seok Jin;Lee, Chan Heun;Kang, Tae Yun;Choi, Jae Hyeok;Jung, Sang Mok;Kang, In Sung;Park, Kwan Ha;Choi, Sang Hoon
    • Journal of fish pathology
    • /
    • v.32 no.2
    • /
    • pp.105-111
    • /
    • 2019
  • Citurs unshiu Markovich is a medicinal product of dried tangerine peel (DTP). It is effective on antioxidation, and getting fame as a medicine and functional food. By utilizing DTP as a feed additive, we aim to enhance the growth rate, innate immunity, and bacterial infection resistance to Tilapia. The DTP extract was added to the feed weight by 0.1, 0.5, 1, 5% and then fed to tilapia for 7 days to evaluate the innate immunity parameter, growth rate and anti-bacterial activity. Innate immunity parameter results showed that the ROI was significantly higher in the 5% group added at high concentration, while showing decrease or no differences in other experimental groups. In other parameters, all the experimental groups showed no significant difference or decreased compared to the control group. The challenge test showed a high survival rate of 71% in the 0.5% group and the lowest in the control group (36%). For the growth rate, the feed efficiency was improved in all groups except for the 0.1% group compared to the control group. In conclusion, DTP extract has bacterial resistant effect in while not affecting innate immune system of fish. Also, it has shown the potential as a possible feed additive as it has brought the improvement on feed efficiency ratio.

Enhancement of bacterial disease resistance in rockish(Sebastes schlegeli) by $\beta$-glucan administration ($\beta$-Glucan 투여에 의한 조피볼락(Sebastes schlegeli)의 세균성 질병에 대한 저항성 향상)

  • Park, Sung-Woo;Kim, Young-Gill;Choi, Dong-Lim
    • Journal of fish pathology
    • /
    • v.10 no.2
    • /
    • pp.143-152
    • /
    • 1997
  • The effect of $\beta$-glucan as an immunostimulant to increase resistance to bacterial diseases by enhancing non-specific defense mechanism in rockfish (Sebastes schlegeli) was examined by oral and bath administration. After oral or bath administration with $\beta$-glucan, the injection challenges with Vibro ordalii, Staphylococcus epidermidis and Edwardsiella tarda were performed to assess $\beta$-glucan efficacy. After injection of V. ordalii, oral administration for 30 days with 1% $\beta$-glucan showed 25% of survival rate. But all control fish died within 3 days after the injection. After injection of S, epidermidis, oral administration group for 20 and 30 days showed a remarkably increased survival rate of 95%. But oral administration of $\beta$-glucan to rockfish did not induce protection against experimental E. tarda infection. $\beta$-Glucan bath administration with or without formalin-killed V. ordalii showed that no protection was observed at 10 days after challenge. The results show that $\beta$-glucan to rockfish was effective to increase survival rate of bacterial infections of S. epidermidis and V. ordalii but not against E. tarda.

  • PDF

Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity

  • Xu, Jian;Zhong, Fei;Zhang, Yonghong;Zhang, Jianlou;Huo, Shanshan;Lin, Hongyu;Wang, Liyue;Cui, Dan;Li, Xiujin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.576-584
    • /
    • 2017
  • Objective: To generate recombinant Bacillus subtilis (B. subtilis) engineered for expression of porcine ${\beta}-defensin-2$ (pBD-2) and cecropin P1 (CP1) fusion antimicrobial peptide and investigate their anti-bacterial activity in vitro and their growth-promoting and disease resisting activity in vivo. Methods: The pBD-2 and CP1 fused gene was synthesized using the main codons of B. subtilis and inserted into plasmid pMK4 vector to construct their expression vector. The fusion peptide-expressing B. subtilis was constructed by transformation with the vector. The expressed fusion peptide was detected with Western blot. The antimicrobial activity of the expressed fusion peptide and the recovered pBD-2 and CP1 by enterokinase digestion in vitro was analyzed by the bacterial growth-inhibitory activity assay. To analyze the engineered B. subtilis on growth promotion and disease resistance, the weaned piglets were fed with basic diet supplemented with the recombinant B. subtilis. Then the piglets were challenged by enteropathogenic Escherichia coli (E. coli). The weight gain and diarrhea incidence of piglets were measured after challenge. Results: The recombinant B. subtilis engineered for expression of pBD-2/CP1 fusion peptide was successfully constructed using the main codons of the B. subtilis. Both expressed pBD-2/CP1 fusion peptide and their individual peptides recovered from parental fusion peptide by enterokinase digestion possessed the antimicrobial activities to a variety of the bacteria, including gram-negative bacteria (E. coli, Salmonella typhimurium, and Haemophilus parasuis) and grampositive bacteria (Staphylococcus aureus). Supplementing the engineered B. subtilis to the pig feed could significantly promote the piglet growth and reduced diarrhea incidence of the piglets. Conclusion: The generated B. subtilis strain can efficiently express pBD-2/CP1 fusion antimicrobial peptide, the recovered pBD-2 and CP1 peptides possess potent antimicrobial activities to a variety of bacterial species in vitro. Supplementation of the engineered B. subtilis in pig feed obviously promote piglet growth and resistance to the colibacillosis.

Evaluation on efficacy of β-hemolytic Streptococcus iniae vaccine on olive flounder, Paralichthys olivaceus (β-용혈성 Streptococcus iniae 불활화백신의 넙치에 대한 효능 평가)

  • Moon, Jin-San;Jang, Hwan;Kim, Ji-Yeon;Joh, Seong-Joon;Kim, Min-Jeong;Son, Seong-Wan
    • Korean Journal of Veterinary Research
    • /
    • v.47 no.3
    • /
    • pp.291-298
    • /
    • 2007
  • Olive flounder, Paralichthys olivaceus is one of the most important cultured fish in Korea, its farming has been negatively impacted by viral, bacterial and parasitic diseases. Streptococcal infection was considered as a serious problem because of significant economic losses in olive flounder farm industry. The development and evaluation of vaccine for protection against infection by this agent were required. We evaluated the safety and efficacy of ${\beta}$-hemolytic Streptococcus (S.) iniae vaccine on olive flounder Three hundreds of flounders (weight $119.8{\pm}20.7g$, body length $22.6{\pm}1.4cm$) were reared in 0.5 tons aquaria in land-marine tank system. Seawater was provided from the sea of Inchon in Korea, and water temperature was set to $22^{\circ}C$ and $25^{\circ}C$ in the vaccination and challenge test, respectively. We used the formalin-inactivated ${\beta}$-hemolytic S. iniae (F2K) vaccine (M VAC INIAE; Kyoritsu seiyaku, Japan) originated in Japan. The vaccine was intraperitoneally administered to fish. Both of vaccinated group and control group were challenged with intraperitoneally injection by virulent S. iniae SI-36 isolates with $1.0{\times}10^7CFU/fish$ at 3 weeks after vaccination. Difference on mortality of control and vaccinated group (90.0 and 15.0%, 76.5 and 8.0% respectively) at two trials were found significant (p<0.05), and relative percent survival were 83.4% and 89.5%, respectively. The dead fishes were showed dark pigmentation of skin, abdominal extension, hemorrhagic ascites, and liver necrosis, and isolated the S. iniae strain from ascites, liver and kidney. We confirmed the safety and efficacy of ${\beta}$-hemolytic S. iniae vaccine by determinations of the optimal management condition and artificial challenge test in olive flounder.

Antimicrobial Activities and Stability of Rhus Javanica L., Cinnamomum Verum and Rosmarinus Officinalis Extracts Used in the Manufacture of Cosmetics (화장품에 적용한 오배자·계피·로즈마리 추출물의 항균활성 및 안정성 검증)

  • Jeon, Hyeong Cheol;Lee, Jae-Nam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.1020-1033
    • /
    • 2020
  • This study attempted to investigate the usefulness of Rhus javanica L., Cinnamomum verum and Rosmarinus officinalis extracts which have antimicrobial and antioxidant effects without any harm on human health as natural preservatives. In terms of extraction, extraction by 70% ethanol and hot-water extraction were used for Cinnamomum verum and Rhus javanica L. respectively. For Rosmarinus officinalis, a mixed method (70% ethanol and hot-water extraction) was adopted. In terms of experimental methods, antimicrobial effects, antioxidant activity through DPPH and safety and stability of cosmetics were assessed, and a challenge test was performed, and the results found the followings: According to an antimicrobial test, good antimicrobial effects were found in bacteria (Rhus javanica L. extract) and fungi (Cinnamomum verum extract). In contrast, the Rosmarinus officinalis extract was set aside because of poor antimicrobial activity. In the mixed extract (Rhus javanica L. + Cinnamomum verum), antimicrobial effects were observed in 'complex C (mixed in a 1:1 ratio)' while both inhibitory and sterilizing effects were found in 5 different test strains at minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). In addition, antioxidant effects were detected in non-mixed extract and mixed extract ('complex C'). Furthermore, a test on cosmetics which adopted '10% complex C' instead of synthetic preservative revealed safety and stability. Therefore, this study has confirmed the potential of the Rhus javanica L., Cinnamomum verum and Rosmarinus officinalis extracts as materials for natural preservatives.

The Calmodulin-Binding Transcription Factor OsCBT Suppresses Defense Responses to Pathogens in Rice

  • Koo, Sung Cheol;Choi, Man Soo;Chun, Hyun Jin;Shin, Dong Bum;Park, Bong Soo;Kim, Yul Ho;Park, Hyang-Mi;Seo, Hak Soo;Song, Jong Tae;Kang, Kyu Young;Yun, Dae-Jin;Chung, Woo Sik;Cho, Moo Je;Kim, Min Chul
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.563-570
    • /
    • 2009
  • We previously isolated the OsCBT gene, which encodes a calmodulin (CaM)-binding protein, from a rice expression library constructed from fungal elicitor-treated rice suspension cells. In order to understand the function of OsCBT in rice, we isolated and characterized a T-DNA insertion mutant allele named oscbt-1. The oscbt-1 mutant exhibits reduced levels of OsCBT transcripts and no significant morphological changes compared to wild-type plant although the growth of the mutant is stunted. However, oscbt-1 mutants showed significant resistance to two major rice pathogens. The growth of the rice blast fungus Magnaporthe grisea, as well as the bacterial pathogen Xanthomonas oryzae pv. oryzae was significantly suppressed in oscbt-1 plants. Histochemical analysis indicated that the hypersensitive-response was induced in the oscbt-1 mutant in response to compatible strains of fungal pathogens. OsCBT expression was induced upon challenge with fungal elicitor. We also observed significant increase in the level of pathogenesis-related genes in the oscbt-1 mutant even under pathogen-free condition. Taken together, the results support an idea that OsCBT might act as a negative regulator on plant defense.

The Antimicrobial Activity of Bacterial-challenged Black Soldier Fly, Hermetia illucens (세균에 의해 면역이 유도된 동애등에의 항균활성)

  • Park, Kwanho;Yun, Eun-Young;Park, Seung-Won;Goo, Tae-Won
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1409-1414
    • /
    • 2016
  • In the larvae of the black soldier fly, Hermetia illucens, innate immunity mechanisms are activated in response to various pathogens and stimulants, resulting in the expression of antimicrobial peptides (AMPs). To induce the mass production of AMPs, H. illucens fifth instar larvae were immunized with five different kinds of bacteria. We isolated from the hemolymph of the H. illucens larvae after bacterial challenge, and their antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) were measured using the inhibition zone assay. Among these five different kinds of bacteria, the hemolymph of Bacillus subtilis-challenged H. illucens larvae showed the strongest antimicrobial activity against both Gram-positive bacteria and Gram-negative bacteria. The antimicrobial activity of the hemolymph of $1{\times}10^9cfu/ml$ B. subtilis-challenged H. illucens peaks at 24 hr at 48 hr post-infection and gradually declines with time. Moreover, the immunized hemolymph also showed strong antimicrobial activity against various poultry pathogens such as S. enteritidis, S. typhimurium, and S. pullorum. These results suggest that the expression of AMP genes in B. subtilis-challenged H. illucens is up-regulated by innate immune responses, and that B. subtilis-challenged H. illucens overexpressing AMPs may be useful as a feed additive in livestock diets to reduce the need for antibiotics.

Induction Patterns of Suppressor of Cytokine Signaling (SOCS) by Immune Elicitors in Anopheles sinensis

  • Noh Mi-Young;Jo Yong-Hun;Lee Yong-Seok;Kim Heung-Chul;Bang In-Seok;Chun Jae-Sun;Lee In-Hee;Seo Sook-Jae;Shin E-Hyun;Han Man-Deuk;Kim Ik-Soo;Han Yeon-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.12 no.2
    • /
    • pp.57-61
    • /
    • 2006
  • Suppressor of cytokine signaling (SOCS) is known to be as a negative feedback regulator in Janus kinase signal transducer and activator of transcription signaling. Highly conserved SOCS box domain was cloned from a Korean malaria vector, Anopheles sinensis. Sequence analysis indicates that it has identity to Anopheles gambiae (96%), Aedes aegypti (94%), Drosophila melanogaster (78%), Mus musculus (72%) and Homo sapiens (72%), respectively. Tissue specificity RT-PCR demonstrated that the expression level of AsSOCS transcript was high at abdomen, midgut, and ovary, whereas developmental expression patterns showed that the level of AsSOCS was high at egg, early pupae, and adult female. On the other hand, RT-PCR analysis after bacterial challenge showed that SOCS mRNA was strongly induced in larvae. In addition, it was also induced by various immune elicitors such as lipoteicoic acid, CpG-DNA, and laminarin. It seems that AsSOCS, repressor of JAK-STAT pathway, is highly conserved in mosquito, and may play an important role in mosquito innate immune response.