• 제목/요약/키워드: bacteria community

검색결과 678건 처리시간 0.031초

Brassica rapa subsp. pekinensis 근권 서식 미생물의 기질이용 활성 조사 (Analysis of Community Level Physiological Profiles in the Rhizosphere of Brassica rapa subsp. pekinensis)

  • 정세라;김승범
    • 환경생물
    • /
    • 제26권1호
    • /
    • pp.42-46
    • /
    • 2008
  • Brassica rapa subsp. pekinensis (배추) 근권에 서식하는 종속영양세균의 군집 밀도 및 군집수준 생리활성을 2곳의 지역에서 각각 측정하였다. 근권의 종속영양세균군집 평균 밀도는 수원이 $2.65\times10^6CFU\;g^{-1}$ soil, 예산이 $3.75\times10^6CFU\;g^{-1}$ soil로 나타났고, 토양은 수원이 $2.45\times10^6CFU\;g^{-1}$ soil, 예산이 $2.97\times10^6CFU\;g^{-1}$ soil로 각각 나타났다. 평균 기능풍부도(functional richness)는 수원이 90.8, 예산이 154.1로 각각 나타났다. 군집 밀도와 기능 풍부도 사이에는 밀접한 상관관계가 보였다. 양쪽 근권에서 가장 활발하게 분해된 기질은 adonitol, L-asparagine, D-gluconic acid, L-glutamic acid와 D-galacturonic acid 등이었으나, 수원과 예산 근권에서의 기질 분해 양상은 뚜렷한 차이를 보였다. 한편 두 곳의 토양 역시 어느 정도 차이를 보였으나, D-raffinose 및 D-mannose는 공통적으로 잘 분해되는 기질로 나타났다.

Impact of Genetically Modified Enterobacter cloacae on Indigenous Endophytic Community of Citrus sinensis Seedlings

  • Fernando Dini;Mortatti, Marcelo-Jose;Souza, Andre-Oliveira de;Walter Maccheroni;Joao Lucio;Welington Luiz
    • Journal of Microbiology
    • /
    • 제42권3호
    • /
    • pp.169-173
    • /
    • 2004
  • Enterobacter cloacae (strain PR2/7), a genetically modified endophyte(GME) in citrus plants, carrying different plasmids (pEC3.0/18, pCelE, pEglA and pGFP), was inoculated into Citrus sinensis seedlings under greenhouse conditions. The impact of this on the indigenous bacterial endophytic community was studied by analyses of 2 different morphologic groups. The germination rates of inoculated seeds were evaluated in greenhouse, and plasmid stability under in vitro conditions. Results demonstrated a great and diverse endophytic community inside plants, and specialization in tissue colonization by some bacterial groups, in different treatments. Shifts in seed germination rate were observed among treatments: in general, the PR2/7 harboring pEglA bacterial- clone significantly reduced seed germination, compared to the PR2/7 harboring pEC3.0/18 clone. This suggests that the presence of the pEglA plasmid changes bacteria-seed interactions. The endophytic community of citrus seedlings changed according to treatment. In seedlings treated with the PR2/7 with pEglA clone, the population of group II decreased significantly, within the context of the total endophytic community. These results indicate that the application of GMEs induces shifts in the endophytic bacterial community of citrus seedlings.

Effects of Ensiling Fermentation and Aerobic Deterioration on the Bacterial Community in Italian Ryegrass, Guinea Grass, and Whole-crop Maize Silages Stored at High Moisture Content

  • Li, Yanbing;Nishino, Naoki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권9호
    • /
    • pp.1304-1312
    • /
    • 2013
  • The effects of storage period and aerobic deterioration on the bacterial community were examined in Italian ryegrass (IR), guinea grass (GG), and whole-crop maize (WM) silages. Direct-cut forages were stored in a laboratory silo for 3, 7, 14, 28, 56, and 120 d without any additives; live counts, content of fermentation products, and characteristics of the bacterial community were determined. 2,3-Butanediol, acetic acid, and lactic acid were the dominant fermentation products in the IR, GG, and WM silages, respectively. The acetic acid content increased as a result of prolonged ensiling, regardless of the type of silage crop, and the changes were distinctively visible from the beginning of GG ensiling. Pantoea agglomerans, Rahnella aquatilis, and Enterobacter sp. were the major bacteria in the IR silage, indicating that alcoholic fermentation may be due to the activity of enterobacteria. Staphylococcus sciuri and Bacillus pumilus were detected when IR silage was spoiled, whereas between aerobically stable and unstable silages, no differences were seen in the bacterial community at silo opening. Lactococcus lactis was a representative bacterium, although acetic acid was the major fermentation product in the GG silage. Lactobacillus plantarum, Lactobacillus brevis, and Morganella morganii were suggested to be associated with the increase in acetic acid due to prolonged storage. Enterobacter cloacae appeared when the GG silage was spoiled. In the WM silage, no distinctive changes due to prolonged ensiling were seen in the bacterial community. Throughout the ensiling, Weissella paramesenteroides, Weissella confusa, and Klebsiella pneumoniae were present in addition to L. plantarum, L. brevis, and L. lactis. Upon deterioration, Acetobacter pasteurianus, Klebsiella variicola, Enterobacter hormaechei, and Bacillus gibsonii were detected. These results demonstrate the diverse bacterial community that evolves during ensiling and aerobic spoilage of IR, GG, and WM silages.

논과 밭 토양에서 토층간 미생물 군집의 차이 (Variation of Microbial Community Along Depth in Paddy and Upland Field)

  • 김찬용;박기춘;이영근
    • 한국토양비료학회지
    • /
    • 제42권2호
    • /
    • pp.139-143
    • /
    • 2009
  • 인지질 지방산을 분석하여 특정 미생물군의 수직적 분포와 토층간 미생물 군집 패턴을 조사하였다. 경북 농업기술원에 위치하고, 질소, 인산, 가리의 화학비료만 장기 연용한 논과 밭 포장에서 15 cm 깊이까지 토양을 채취하였다. 인지질 지표 지방산을 주요인 분석으로 분석하여 토양 미생물 군집을 분석한 결과 논과 밭 토양의 미생물 군집은 뚜렷하게 구분되었으며, 토층간 차이보다 논과 밭의 차이가 더 컸다. 논보다 밭은 토층이 깊어짐에 따라 미생물 군집이 급격하게 변하였는데, 미생물 군집 측면에서 밭보다 논의 표층이 더 두껍다고 볼 수 있다. cyclopropyl/monoenoic precursor 비율과 전체 포화지방산/전체 불포화 지방산 비율은 토심이 깊어짐에 따라 증가하였는데, 이는 토심이 깊어질수록 탄소원과 통기가 부족하기 때문에 일어나는 현상으로 보인다. 대체로 표토는 그램음성균, 곰팡이 등의 상대적 비율이 높고 토심이 깊어질수록 세균과 방선균의 상대적 비율이 높아졌다.

Salinity affects microbial community structure in saemangeum reclaimed land

  • Kim, Kiyoon;Samaddar, Sandipan;Ahmed, Shamim;Roy, Choudhury Aritra;Sa, Tongmin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.364-364
    • /
    • 2017
  • Saemangeum reclaimed land is a part of Saemangeum Development Project. Most of the persistent problems of Saemangeum reclaimed land remain to be related to soil salinity. Soil salinity is a major abiotic factor related to microbial community structure and also fungi have been reported to be more sensitive to salinity stress than bacteria. The aim of this study was conducted to investigate the effect of soil salinity levels on the microbial communities in Saemangeum reclaimed land using 454 pyrosequencing analysis. Soil samples was collected from 12 sites of in Saemangeum reclaimed land. For pyrosequencing, 27F/518R (bacteria) and ITS3/ITS4 (fungi) primers were used containing the Roche 454 pyrosequencing adaptor-key-linker (underlined) and unique barcodes (X). Pyrosequencing was performed by Chun's Lab (Seoul, Korea) using the standard shotgun sequencing reagents and a 454 GS FLX Titanium sequencing System (Roche, Inc.). In the soil samples, Proteobacteria (bacteria) and Ascomycota (fungi) shows the highest relative abundance in all the soil sample sites. Proteobacteria, Bacteroidetes, Plantomycetes, Gemmatimonadetes and Parcubacteria were shown to have significantly higher abundance in high salinity level soils than low salinity level soils, while Acidobacteria and Nitrospirae has significantly higher relative abundance in low salinity level soils. The abundance of fungal, Ascomycota has the highest relative abundance in soil samples, followed by Basidiomycota, Chlorophyta, Zygomycota and Chytridiomycota. Basidiomycota, Zygomycota, Glomeromycota and Cerozoa were show significantly higher relative abundance in low salinity level soils. The principal coordinate analysis (PCoA) and correlation analysis shown to salinity-related soil parameters such as ECe, Na+, SAR and EPS were affected to bacterial and fungal community structure. Proteobacteria, Bacteroidetes, Plantomycetes exhibited significantly positive correlation with soil salinity, while Acidobacteria exhibited significantly negative correlation. In the case of fungal community, Basidiomycota and Zygomycota were seen show significantly negative correlation with salinity related soil parameters. These results suggest that provide understanding effect of soil salinity on microbial community structure and correlation of microbial community with soil parameters in Saemangeum reclaimed land.

  • PDF

비자 추출물의 식품부패균에 대한 항균효과 및 항산화활성 (Antimicrobial Effects on Food-Borne Pathogens and the Antioxidant Activity of Torreya Nucifera Extract)

  • 임태진;최무영
    • 한국지역사회생활과학회지
    • /
    • 제26권4호
    • /
    • pp.697-705
    • /
    • 2015
  • This study investigates antimicrobial effects of food-borne pathogens and the antioxidant activity of Torreya nucifera extract. The growth of food-borne pathogens including Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans was inhibited by the extract. The antimicrobial activity of the extract was highest for Staphylococcus aureus among seven gram-positive bacteria and for Pseudomonas aeruginosa among six gram-negative bacteria. The extract exhibited slightly lower DPPH radical-scavenging activity, but its ABTS radical-scavenging activity was higher than that of ${\alpha}$-tocopherol. The results demonstrate the extract's antimicrobial effects on food-borne pathogens as well as potent antioxidant capacity and suggest that Torreya nucifera may be used as a natural antibacterial agent and an effective antioxidant in food.

Analysis of Bacterial Community Structure in Bulk Soil, Rhizosphere Soil, and Root Samples of Hot Pepper Plants Using FAME and 16S rDNA Clone Libraries

  • Kim, Jong-Shik;Kwon, Soon-Wo;Jordan, Fiona;Ryu, Jin-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.236-242
    • /
    • 2003
  • A culture-independent and -dependent survey of the bacterial community structure in the rhizosphere and soil samples from hot pepper plants was conducted using 16S rDNA clone library and FAME analyses. Out of the 78 clones sequenced, 56% belonged to Proteobacteria, 4% to high G+C Gram- positive group, 3% to Cytophyga-Flexibacter-Bacreroides, and 32% could not be grouped with any known taxonomic division. Among the 127 FAME isolates identified, 66% belonged to low G+C Gram-positive bacteria (Baciilus spp.) and 26% to high G+C Gram-positive bacteria. In a cluster analysis, the results for both methods were found to be strikingly dissimilar. The current study is the first comparative study of FAME and 165 rDNA clonal analyses performed on the same set of soil, rhizosphere soil, and root samples.

Public Health Risks: Antibiotic Resistance - Review -

  • Barton, Mary D;Hart, Wendy S
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권3호
    • /
    • pp.414-422
    • /
    • 2001
  • Antibiotic resistance in human pathogens is a major public health issue. Some of the resistance problem can be attributed to the transfer of resistant bacteria from animals to people and the transfer of resistance genes from animal pathogens and commensal bacteria to human pathogens. Control measures include improvements in food hygiene to reduce the spread of zoonotic bacteria to people via the food chain. However, to specifically address the issue, the medical profession must control misuse and overuse of antibiotics in hospitals and community practice. In addition, the livestock industries and their advisors must reduce and refine the use of antibiotics in animal production and replace antibiotics with alternative disease control measures as much as possible.

Quorum Sensing and Quorum-Quenching Enzymes

  • Dong, Yi-Hu;Zhang, Lian-Hui
    • Journal of Microbiology
    • /
    • 제43권spc1호
    • /
    • pp.101-109
    • /
    • 2005
  • To gain maximal benefit in a competitive environment, single-celled bacteria have adopted a community genetic regulatory mechanism, known as quorum sensing (QS). Many bacteria use QS signaling systems to synchronize target gene expression and coordinate biological activities among a local population. N-acylhomoserine lactones (AHLs) are one family of the well-characterized QS signals in Gram-negative bacteria, which regulate a range of important biological functions, including virulence and biofilm formation. Several groups of AHL-degradation enzymes have recently been identified in a range of living organisms, including bacteria and eukaryotes. Expression of these enzymes in AHL-dependent pathogens and transgenic plants efficiently quenches the microbial QS signaling and blocks pathogenic infections. Discovery of these novel quorum quenching enzymes has not only provided a promising means to control bacterial infections, but also presents new challenges to investigate their roles in host organisms and their potential impacts on ecosystems.

In-Depth Characterization of Wastewater Bacterial Community in Response to Algal Growth Using Pyrosequencing

  • Lee, Jangho;Lee, Juyoun;Lee, Tae Kwon;Woo, Sung-Geun;Baek, Gyu Seok;Park, Joonhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권10호
    • /
    • pp.1472-1477
    • /
    • 2013
  • Microalgae have been regarded as a natural resource for sustainable materials and fuels, as well as for removal of nutrients and micropollutants from wastewater, and their interaction with bacteria in wastewater is a critical factor to consider because of the microbial diversity and complexity in a variety of wastewater conditions. Despite their importance, very little is known about the ecological interactions between algae and bacteria in a wastewater environment. In this study, we characterized the wastewater bacterial community in response to the growth of a Selenastrum gracile UTEX 325 population in a real municipal wastewater environment. The Roche 454 GS-FLX Titanium pyrosequencing technique was used for indepth analysis of amplicons of 16S rRNA genes from different conditions in each reactor, with and without the algal population. The algal growth reduced the bacterial diversity and affected the bacterial community structure in the wastewater. The following in-depth analysis of the deep-sequenced amplicons showed that the algal growth selectively stimulated Sphingobacteria class members, especially the Sediminibacterium genus population, in the municipal wastewater environment.