• 제목/요약/키워드: bacteria community

Search Result 671, Processing Time 0.019 seconds

Effects of Heat-stress on Rumen Bacterial Diversity and Composition of Holstein Cows (고온 스트레스 영향에 따른 홀스타인종 젖소의 반추위내 미생물 균총 변화)

  • Kim, Dong Hyeon;Kim, Myung Hoo;Kim, Sang Bum;Ha, Seung Min;Son, Jun Kyu;Lee, Ji Hwan;Hur, Tai Young;Lee, Jae Yeong;Park, Ji Hoo;Choi, Hee Chul;Lee, Hyun Jeong;Park, Beom Young;Ki, Kwang Seok;Kim, Eun Tae
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.227-234
    • /
    • 2019
  • This study was performed to investigate the effect of heat-stressed environment on rumen microbial diversity in Holstein cows. Rectal temperature and respiration rate were measured and rumen fluid was collected under normal environment (NE; Temperature humidity index (THI)=64.6) and heat-stressed environment (HE; THI=87.2) from 10 Holstein cows (60±17.7 months, 717±64.4 kg) fed on the basis of dairy feeding management in National Institute of Animal Science. The rumen bacteria diversity was analyzed by using the Illumina HiSeqTM 4000 platform. The rectal temperature and respiratory rate were increased by 1.5℃ and 53 breaths/min in HE compared to that in NE, respectively. In this study, HE exposure induced significant changes of ruminal microbe. At phylum level, Fibrobacteres were increased in HE. At genus level, Ruminococcaceae bacterium P7 and YAD3003, Butyrivibrio sp. AE2032, Erysipelotrichaceae bacterium NK3D112, Bifidobacterium pseudolongum, Lachnospiraceae bacterium FE2018, XBB2008, and AC2029, Eubacterium celulosolvens, Clostridium hathewayi, and Butyrivibrio hungatei were decreased in HE, while Choristoneura murinana nucleopolyhedrovirus, Calothrix parasitica, Nostoc sp. KVJ20, Anabaena sp. ATCC 33047, Fibrobacter sp. UWB13 and sp. UWB5, Lachnospiraceae bacterium G41, and Xanthomonas arboricola were increased in HE. In conclusion, HE might have an effect to change the rumen microbial community in Holstein cows.