• 제목/요약/키워드: backward

검색결과 2,439건 처리시간 0.023초

축대칭 하향단흐름에서 자유흐름 난류강도의 영향 (Effects of the free Stream Turbulence Intensity on the Flow Over an Axisymmetric Backward-Facing Step)

  • 양종필;김경천;부정숙
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2328-2341
    • /
    • 1995
  • An experimental study on the flow over the axisymmetric backward-facing step was carried out. The purposes of the present study are to investigate the effect of the free stream turbulence intensity on the reattachment length and to understand the turbulence structure of the recirculating flows. Local mean and fluctuating velocity components were measured in the separated and reattaching axisymmetric turbulent boundary layer over the wall of convex cylinder placed in a water tunnel by using 2-color 4-beam fiber optics laser Doppler velocimetry. As the free stream turbulence intensity increased, the reattachment length became shorter due to the enhanced mixing in the separated shear layer. It was also observed that the reverse flow velocity and turbulent kinetic energy increase with increasing free stream turbulence intensity. Spectral data and flow visualization showed that low-frequency motions occur in the separated flow behind a backward-facing step. These motions have a significant effect on the time-averaged turbulence data.

빔형성방법을 이용한 회전하는 음원의 위치 판별에 관한 연구 (Localization of Rotating Sound Sources Using Beamforming Method)

  • 이재형;홍석호;최종수
    • 한국소음진동공학회논문집
    • /
    • 제14권12호
    • /
    • pp.1338-1346
    • /
    • 2004
  • The positions of rotating sound sources have been localized by experiments with the Doppler effects removed. In order to de-Dopplerize the sound signals emitted from moving sources, two kinds of signal reconstruction methods were applied. One is the forward propagation method and the other is the backward propagation method. Forward propagation method analyze the source emission time based on the instantaneous distance between sensors and the assumed source position, then the signals are reconstructed with respect to the emission time. On the other hand, the backward method uses time delay to do-Dopplerize the acquired data for the received time of reference. In both techniques. the reconstructed signal data were processed using beamforming algorithm to produce power distributions at the frequencies of interest. Experiments have been carried out for varying frequencies, rotating speeds and the object distances. It is shown that the forward propagation method gives better performance in locating source position than the backward propagation method.

Identification of dynamic characteristics of structures using vector backward auto-regressive model

  • Hung, Chen-Far;Ko, Wen-Jiunn;Peng, Yen-Tun
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.299-314
    • /
    • 2003
  • This investigation presents an efficient method for identifying modal characteristics from the measured displacement, velocity and acceleration signals of multiple channels on structural systems. A Vector Backward Auto-Regressive model (VBAR) that describes the relationship between the output information in different time steps is used to establish a backward state equation. Generally, the accuracy of the identified dynamic characteristics can be improved by increasing the order of the Auto-Regressive model (AR) in cases of measurement of data under noisy circumstances. However, a higher-order AR model also induces more numerical modes, only some of which are the system modes. The proposed VBAR model provides a clear characteristic boundary to separate the system modes from the spurious modes. A numerical example of a lumped-mass model with three DOFs was established to verify the applicability and effectiveness of the proposed method. Finally, an offshore platform model was experimentally employed as an application case to confirm the proposed VBAR method can be applied to real-world structures.

다중회귀모형에서 전진선택과 후진제거의 기하학적 표현 (Geometrical description based on forward selection & backward elimination methods for regression models)

  • 홍종선;김명진
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.901-908
    • /
    • 2010
  • 다중회귀모형에서 변수선택법 중에서 전진선택과 후진제거의 과정을 기하학적으로 표현하는 그래픽적 방법을 제안한다. 반지름이 1인 반원의 제1사분면에는 전진선택 과정을, 제2사분면에는 후진제거 과정을 표현한다. 각 단계에서 회귀제곱합을 벡터로 표현하고, 추가제곱합 또는 부분결정계수를 벡터 사이의 각도로 나타내며 벡터의 끝을 연결할 때 통계적으로 유의하면 점선으로 표현하여 부분가설검정의 통계적 분석결과를 인지할 수 있도록 작성한다. 이 방법을 이용하면 전진선택과 후진제거 방법에 의한 최종모형을 비교 분석하고 전체적으로 모형의 적합도를 파악할 수 있다.

역확산 방정식을 이용한 영상복원 알고리즘 (Image Restoration Algorithm using Backward Diffusion Equation)

  • 이석호;최은철;강문기
    • 대한전자공학회논문지SP
    • /
    • 제40권1호
    • /
    • pp.34-42
    • /
    • 2003
  • 본 논문은 영상복원을 역확산 과정으로 해석하여 복원된 영상을 역확산 방정식의 해로 구하는 알고리즘을 제안한다. 역확산 과정은 물리적으로 불량위치(ill-posed)과정이기 때문에, 이를 정규화 해주어야 하는데 이를 위해서 역확산 과정을 고유함수(eigenfunction)들의 전개로 나타낸 후에 고유함수들의 계수들을 조작하였다. 본 논문에서는 계수들을 조작할 때 영상이 가지고 있는 주파수 특성을 고려하여 한계주파수(cut-off frequency)를 넘은 경우에 계수들을 시간과 주파수의 감소함수로 나타내어 불량위치문제를 해결하였다. 계수를 주파수에 대찬 감소함수로 나타낸 것은 영상에 저주파 성분이 많고, 고주파 성분이 영상의 형성에 기치는 영향이 상대적으로 적다는 영상의 특성을 고려한 것이다. 이러한 감소함수를 사용하였을 때 불랑위치 문제를 해결할 수 있다는 것을 증명하였고, 실험적으로 양질의 영상을 산출함을 보였다.

재순환 및 선회 유동에 대한 대와동모사(LES)의 성능검토 (Performance Evaluation of Large Eddy Simulation for Recirculating and Swirling Flows)

  • 황철홍;이창언
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.364-372
    • /
    • 2006
  • The objective of this study is to evaluate the efficiency and the prediction accuracy of developed large eddy simulation (LES) program for complex turbulent flows, such as recirculating and swirling flows. To save the computational cost, a Beowulf cluster system consisting 16 processors was constructed. The flows in backward-facing step and dump combustor were examined as representative recirculating and swirling flows. Firstly, a direct numerical simulation (DNS) for laminar backward-facing step flows was previously conducted to validate the overall performance of program. Then LES was carried out for turbulent backward-facing step flows. The results of laminar flow showed a qualitative and quantitative agreement between simulations and experiments. The simulations of the turbulent flow also showed reasonable results. Secondly, LES results for non-swirling and swirling flows in a dump combustor were compared with the results of Reynolds-averaged Navier-Stokes (RANS) using standard $k-{\varepsilon}$ model. The results show that LES has a better performance in predicting the mean axial and azimuthal velocities, comer recirculation zone (CRZ) and center toroidal recirculation zone (CTRZ) than those of RANS. Finally, it was examined the capability of LES for the description of unsteady phenomena.

동적계획법을 이용한 자작 하이브리드 자동차의 용량 매칭 (Component Sizing for the Hybrid Electric Vehicle (HEV) of Our Own Making Using Dynamic Programming)

  • 김기수;김진성;박영일
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.576-582
    • /
    • 2015
  • Generally, the fuel economy of hybrid electric vehicle (HEV) is effected by the size of each component. In this study the fuel economy for HEV of our own making is evaluated using backward simulator, where dynamic programming is applied. In a competition, the vehicle is running through the road course that includes many speed bumps and steep grade. Therefore, the new driving cycle including road grade is developed for the simulation. The backward simulator is also developed through modeling each component. A performance map of engine and motor for component sizing is made from the existing engine map and motor map adapted to the HEV of our own making. For optimal component sizing, the feasible region is defined by restricting the power range of power sources. Optimal component size for best fuel economy is obtained within the feasible region through the backward simulation.

시뮬레이터를 이용한 중형 저상버스의 주행성능 예측 (Driving Performance Prediction for Low-floor Midsize bus Using Simulator)

  • 김기수;김진성;박영일;이치범
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.541-547
    • /
    • 2015
  • In this study, the performance of a low-floor midsize bus under development is predicted through simulations. To predict the vehicle's acceleration, maximum speed, and uphill driving performance, a forward simulator which calculates the vehicle power is developed. Also we verify the forward simulator by comparing simulations and test result for benchmarking vehicle. To predict the fuel consumption, we use a backward simulator for a specified road cycle. However, to predict the fuel consumption using the backward simulation the engine fuel-consumption map is needed. The engine fuel-consumption map extracting data from a similar sized diesel engine is used by re-scaling the maximum torque. As a result, we simulate the vehicle's forward performance with a new engine. Further, we simulated the backward performance to optimize the fuel efficiency and gearshift timing.

Ti-6Al-4V합금의 열간 후방압출에 대한 성형 안정성 평가모델의 고찰 (Investigation of Forming Stabilities Criteria in Hot Backward Extrusion of Ti-6Al-4V)

  • 염종택;박노광;이유환;신태진;황상무;홍성석;심인옥;이종수
    • 한국군사과학기술학회지
    • /
    • 제7권3호
    • /
    • pp.84-92
    • /
    • 2004
  • The metal forming behavior of Ti-6Al-4V tube during hot backward extrusion was investigated with various forming stabilities or instabilities criteria. that is, Ziegler's instability criterion, dynamic materials model(DMM) stability criteria and Rao's instability criterion. These approaches also were coupled to the internal variables generated from FE simulation. In order to validate the reliabilities of three criteria, hot backward extrusions for Ti-6Al-4V tube making were carried out with different backward extrusion designs. The useful model for predicting the forming defects was suggested through the comparison between experimental observations and simulation results.

후향계단 난류 박리재부착 유동에서의 대형와의 구조 (Large-Scale Vertical Structure in Separated and Reattaching Turbulent flow over a Backward Facing Step)

  • 안승광;이인원;성형진
    • 대한기계학회논문집B
    • /
    • 제26권12호
    • /
    • pp.1674-1680
    • /
    • 2002
  • An experimental study was made of a large-scale vortical structure over a backward-facing step. The Reynolds number based on the step height was R $e_{H}$ =33,000. To recognize the large-scale vortex, three components of velocity were measured. The measurements were performed in the recirculation zone (x/H=4.0) and the reattachment zone(x/H=7.5). To measure the wall pressure fluctuations in a turbulent flow over a backward-facing step, a 32-channel microphone array was installed beneath the wall in the streamwise and spanwise directions. From the measured pressure field, the size of large-scale vortex was obtained. As a detailed study, a conditionally-averaging technique was employed to characterize the coherent structure of the large-scale vortex. To see the relationship between the flow field and the relevant spatial mode of the pressure field, the spatial box filtering (SBF) was examined. A cross-correlation between velocity and pressure fluctuations was performed to identify the structure and the length scale of the large-scale vortex.x.