• Title/Summary/Keyword: backscatter electron

Search Result 64, Processing Time 0.023 seconds

Grain Size Determination of Copper Film by Electron Backscatter Diffraction (EBSD를 이용한 구리박막의 결정립 크기 결정)

  • Kim, Su-Hyeon;Kang, Joo-Hee;Han, Seung Zeon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.9
    • /
    • pp.847-855
    • /
    • 2010
  • The grain size of a cross-section of $8{\mu}m$-thick copper film was determined by electron backscatter diffraction analysis. Grain size distribution histogram showed the presence of a large fraction of small-sized grains, and the mean grain size was significantly affected by handling of them. A cut-off grain size, below which all grains are ignored as noise and eliminated for the calculation of the mean value, should be three or four times as large as the step size. Due to the presence of small grains, the linear intercept method derived larger mean grain size, which depends less sensitively on the cut-off grain size than the equivalent circle diameter method.

Simulation of Energy Absorption Distribution using of Lead Shielding in the PET/CT (PET/CT 검사에서 납 차폐체 사용에 따른 에너지 흡수 분포에 관한 모의실험)

  • Jang, Dong-Gun;Kim, Changsoo;Kim, Junghoon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.459-465
    • /
    • 2015
  • Energy absorption distribution according to lead shielding for 511 keV ${\gamma}$ ray was evaluated using a Monte Carlo simulation in PET/CT. Experimental method was performed about the depth of skin surface(0.07), lens(3) and the depth(10) was conducted by using ICRU Slab phantom. Difference of energy absorption distribution according to lead thickness and effect of air gap according to distance of lead and phantom. As a result, study showed that using a lead shielding makes high energy distribution by backscatter electron. As a distance between lead and phantom increased, energy absorption distribution gradually decreased. 9 cm or more air gap should exist to prevent effect of backscatter electron which reaches skin surface, when 0.25 mmPb shielding is used. Also 1 cm or more air gap was needed to prevent the effect in 0.5 mmPb. If air gap was not concerned, 0.75 mm or more lead thickness was necessary to prevent effect of backscatter electron.

Microstructure Characteristics and Identification of Low-Carbon Steels Fabricated by Controlled Rolling and Accelerated Cooling Processes (제어 압연과 가속 냉각에 의해 저탄소강에서 형성되는 미세조직의 특징과 구분)

  • Lee, Sang-In;Hong, Tae-Woon;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.636-642
    • /
    • 2017
  • In the present study the microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes was characterized and identified based on various microstructure analysis methods including optical and scanning electron microscopy, and electron backscatter diffraction(EBSD). Although low-carbon steels are usually composed of ${\alpha}-ferrite$ and cementite($Fe_3C$) phases, they can have complex microstructures consisting of ferrites with different size, morphology, and dislocation density, and secondary phases dependent on rolling and accelerated cooling conditions. The microstructure of low-carbon steels investigated in this study was basically classified into polygonal ferrite, acicular ferrite, granular bainite, and bainitic ferrite based on the inverse pole figure, image quality, grain boundary, kernel average misorientation(KAM), and grain orientation spread(GOS) maps, obtained from EBSD analysis. From these results, it can be said that the EBSD analysis provides a valuable tool to identify and quantify the complex microstructure of low-carbon steels fabricated by controlled rolling and accelerated cooling processes.

Analysis of Plastic Deformation Behavior according to Crystal Orientation of Electrodeposited Cu Film Using Electron Backscatter Diffraction and Crystal Plasticity Finite Element Method (전자 후방 산란 분석기술과 결정소성 유한요소법을 이용한 전해 도금 구리 박막의 결정 방위에 따른 소성 변형 거동 해석)

  • Hyun Park;Han-Kyun Shin;Jung-Han Kim;Hyo-Jong Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.36-44
    • /
    • 2024
  • Copper electrodeposition technology is essential for producing copper films and interconnects in the microelectronics industries including semiconductor packaging, semiconductors and secondary battery, and there are extensive efforts to control the microstructure of these films and interconnects. In this study, we investigated the influence of crystallographic orientation on the local plastic deformation of copper films for secondary batteries deformed by uniaxial tensile load. Crystallographic orientation maps of two electrodeposited copper films with different textures were measured using an electron backscatter diffraction (EBSD) system and then used as initial conditions for crystal plasticity finite element analysis to predict the local plastic deformation behavior within the films during uniaxial tension deformation. Through these processes, the changes of the local plastic deformation behavior and texture of the films were traced according to the tensile strain, and the crystal orientations leading to the inhomogeneous plastic deformation were identified.

Three-Dimensional Automated Crystal Orientation and Phase Mapping Analysis of Epitaxially Grown Thin Film Interfaces by Using Transmission Electron Microscopy

  • Kim, Chang-Yeon;Lee, Ji-Hyun;Yoo, Seung Jo;Lee, Seok-Hoon;Kim, Jin-Gyu
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.183-188
    • /
    • 2015
  • Due to the miniaturization of semiconductor devices, their crystal structure on the nanoscale must be analyzed. However, scanning electron microscope-electron backscatter diffraction (EBSD) has a limitation of resolution in nanoscale and high-resolution electron microscopy (HREM) can be used to analyze restrictive local structural information. In this study, three-dimensional (3D) automated crystal orientation and phase mapping using transmission electron microscopy (TEM) (3D TEM-EBSD) was used to identify the crystal structure relationship between an epitaxially grown CdS interfacial layer and a $Cu(In_xGa_{x-1})Se_2$ (CIGS) solar cell layer. The 3D TEM-EBSD technique clearly defined the crystal orientation and phase of the epitaxially grown layers, making it useful for establishing the growth mechanism of functional nano-materials.

Assessment of Multiple Delamination in Laminated Composites for Aircrafts using X-ray Backscattering (X-ray 후방산란 기술을 이용한 항공기용 복합재료의 다중 층간 박리 평가)

  • Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.46-53
    • /
    • 2010
  • A Compton X-ray backscatter technique has been developed to quantitatively assess impact damage in quasi-isotropic laminated composites made by a drop-weight tester. X-ray backscatter imaging system with a slit-type camera is constructed to obtain a cross-sectional profile of impact-damaged laminated composites from the electron-density variation of the cross section. A nonlinear scattering model based on Boltsman equation is introduced to compute Compton X-ray backscattering field for the defect assessment. An adaptive filter is also used to reduce noises from many sources including quantum noise and irregular distributions of fibers and matrix in composites. Delaminations masked or distorted by the first delamination are detected and characterized effectively by the Compton X-ray backscatter technique, both in width and location, by application of error minimization algorithm.

A Study on Electrically Assisted Solid State Joining of Aluminum and Copper (알루미늄과 구리 간 통전고상접합 연구)

  • Park, J.W.;Choi, H.;Lee, S.;Jeong, H.J.;Hong, S.T.;Han, H.N.
    • Transactions of Materials Processing
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2020
  • The influence of electric current on the joining properties of aluminum and copper was investigated. Various pulsed electric current conditions were set to the joining specimens followed by pressure. The shear strength of the joint area between aluminum and copper was measured by the lab shear test. In addition, the microstructures of the joint area were observed through a field emission scanning electron microscope, energy dispersive X-ray, and electron backscatter diffraction. The mechanical properties of each phase in the joint region were measured by nano-indentation. As a result, it was confirmed that electrically assisted solid state joining of copper and aluminum could be applied in various industrial fields.

Evaluation of Spin Direction in Ferrite-Plated Films by $Fe^{57}$ Conversion Electron Mossbauer Spectroscopy

  • Shirasaki, Fumio;Kitamoto, Yoshitaka;Kantake, Shusuke;Abe, Masanori
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.405-407
    • /
    • 2000
  • Polycrystalline films of Ni- and Co-ferrites films are prepared from aqueous solution at $90^{\circ}C$ by ferrite plating, which are subjected to Fe$^57$ conversion electron Mossbauer spectroscopy in backscatter mode. The average angle of Fe spins relative to the film plane is evaluated as 18 degree and 82 degree for the Ni- and Co-ferrite films, respectively, indicating a prominent magnetic anisotropy parallel and perpendicular to the film plane. It was also verified by the magnetization measurements.

  • PDF

Effect of Manganese on the Microstructure of Cemented Carbides

  • Weidow, Jonathan;Norgren, Susanne;Elfwing, Mattias;Andren, Hans-Olof
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.348-349
    • /
    • 2006
  • The plastic deformation behavior of cemented carbides is related to the WC grain boundary strength. Ab initio calculations predict that Co and Mn segregate to WC/WC grain boundaries. To experimentally study the effect of Mn, a WC-Co-Mn material was manufactured and compared to a WC-Co material. The microstructure was studied using scanning electron microscopy (SEM), including electron backscatter diffraction (EBSD). Special attention was paid to the WC grain size and the frequency of special low-energy grain boundaries. Mn was found to have negligible effect on both the WC grain growth and the fraction of $\sum2$ WC/WC boundaries in the as-sintered material.

  • PDF