• Title/Summary/Keyword: backpropagation algorithm

Search Result 350, Processing Time 0.027 seconds

A Design of the Recurrent NN Controller for Autonomous Mobil Robot by Coadaptation of Evolution and Learning (진화와 학습의 상호 적응에 의한 자발적 주행 로봇을 위한 재귀 신경망 제어기 설계)

  • Kim, Dae-Jin;Gang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.3
    • /
    • pp.27-38
    • /
    • 2000
  • This paper proposes how the recurrent neural network controller for a Khepera mobile robot with an obstacle avoiding ability can be determined by co-adaptation of the evolution and learning, The proposed co-adaptation scheme consists of two folds: a population of NN controllers are evolved by the genetic algorithm so that the degree of obstacle avoidance might be reduced through the global searching and each NN controller is trained by CRBP learning so that the running behavior is adapted to its outer environment through the local searching. Experimental results shows that the NN controller coadapted by evolution and learning outperforms its non-learning equivalent evolved by only genetic algorithm in both the ability of obstacle avoidance and the convergence speed reaching to the required running behavior.

  • PDF

A Study on Development of Automatic Path Tracking Algorithm for LNG Aluminium Plate and Selection of Process Parameters by Using Artificial Intelligence (LNG 알루미늄 판재 가공용 자동 궤적 추적 알고리즘 개발 및 인공지능을 이용한 공정조건 선정에 관한 연구)

  • 문형순;권봉재;정문영;신상룡
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.8
    • /
    • pp.17-25
    • /
    • 1998
  • Aluminum alloys have low density, relatively high strength and yield strength, good plasticity, good machinability, and high corrosion and acid resistance. Therefore, they are suitable for large containers for the food, chemical and other industries. Large containers are often bodies of revolution consisting of shell courses, stiffening rings, heads and other elements joined by annular welds. Larger containers have longer welds and require greater leak-tightness and higher weld mechanical properties. The LNG tank consists of aluminum plates with various sizes, so its construction should by divided by several sections. Moreover, each section has its own sub-section consisted of several aluminum plates. To guarantee the quality of huge LNG tank, therefore, the precise control of plate dimension should by urgently needed in conjunction with the appropriate selection of process parameters such as cutting speed, depth of cut, rotational speed and so on. In this paper, a manufacturing system was developed to implement automatic circular tracking in height direction and automatic circular interpolation in depth of cut direction. Also, the neural network based on the backpropagation algorithm was used to predict the cutting quality and motor load related with the life time of the developed system. It was revealed that the manufacturing system and the neural network could be effectively applied to the bevelling process and to predict the quality of machined area and the motor load.

  • PDF

Weight Determination of Landslide Factors Using Artificial Neural Networks (인공신경 망을 이용한 산사태 발생요인의 가중치 결정)

  • 류주형;이사로;원중선
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.67-74
    • /
    • 2002
  • The purpose of this study is to determine the weights of the factors for landslide susceptibility analysis using artificial neural network. Landslide locations were identified from interpretation of aerial photographs, field survey data, and topography. The landslide-related factors such as topographic slope, topographic curvature, soil drainage, soil effective thickness, soil texture, wood age and wood diameter were extracted from the spatial database in study area, Yongin. Using these factors, the weights of neural networks were calculated by backpropagation training algorithm and were used to determine the weight of landslide factors. Therefore, by interpreting the weights after training, the weight of each landslide factor can be ranked based on its contribution to the classification. The highest weight is topographic slope that is 5.33 and topographic curvature and soil texture are 1 and 1.17, respectively. Weight determination using backprogpagation algorithms can be used for overlay analysis of GIS so the factor that have low weight can be excluded in future analysis to save computation time.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

The Study of the Financial Index Prediction Using the Equalized Multi-layer Arithmetic Neural Network (균등다층연산 신경망을 이용한 금융지표지수 예측에 관한 연구)

  • 김성곤;김환용
    • Journal of the Korea Society of Computer and Information
    • /
    • v.8 no.3
    • /
    • pp.113-123
    • /
    • 2003
  • Many researches on the application of neural networks for making financial index prediction have proven their advantages over statistical and other methods. In this paper, a neural network model is proposed for the Buying, Holding or Selling timing prediction in stocks by the price index of stocks by inputting the closing price and volume of dealing in stocks and the technical indexes(MACD, Psychological Line). This model has an equalized multi-layer arithmetic function as well as the time series prediction function of backpropagation neural network algorithm. In the case that the numbers of learning data are unbalanced among the three categories (Buying, Holding or Selling), the neural network with conventional method has the problem that it tries to improve only the prediction accuracy of the most dominant category. Therefore, this paper, after describing the structure, working and learning algorithm of the neural network, shows the equalized multi-layer arithmetic method controlling the numbers of learning data by using information about the importance of each category for improving prediction accuracy of other category. Experimental results show that the financial index prediction using the equalized multi-layer arithmetic neural network has much higher correctness rate than the other conventional models.

  • PDF

The Flood Water Stage Prediction based on Neural Networks Method in Stream Gauge Station (하천수위표지점에서 신경망기법을 이용한 홍수위의 예측)

  • Kim, Seong-Won;Salas, Jose-D.
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.247-262
    • /
    • 2000
  • In this paper, the WSANN(Water Stage Analysis with Neural Network) model was presented so as to predict flood water stage at Jindong which has been the major stream gauging station in Nakdong river basin. The WSANN model used the improved backpropagation training algorithm which was complemented by the momentum method, improvement of initial condition and adaptive-learning rate and the data which were used for this study were classified into training and testing data sets. An empirical equation was derived to determine optimal hidden layer node between the hidden layer node and threshold iteration number. And, the calibration of the WSANN model was performed by the four training data sets. As a result of calibration, the WSANN22 and WSANN32 model were selected for the optimal models which would be used for model verification. The model verification was carried out so as to evaluate model fitness with the two-untrained testing data sets. And, flood water stages were reasonably predicted through the results of statistical analysis. As results of this study, further research activities are needed for the construction of a real-time warning of the impending flood and for the control of flood water stage with neural network method in river basin. basin.

  • PDF

Development of a window-shifting ANN training method for a quantitative rock classification in unsampled rock zone (미시추 구간의 정량적 지반 등급 분류를 위한 윈도우-쉬프팅 인공 신경망 학습 기법의 개발)

  • Shin, Hyu-Soung;Kwon, Young-Cheul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.151-162
    • /
    • 2009
  • This study proposes a new methodology for quantitative rock classification in unsampled rock zone, which occupies the most of tunnel design area. This methodology is to train an ANN (artificial neural network) by using results from a drilling investigation combined with electric resistivity survey in sampled zone, and then apply the trained ANN to making a prediction of grade of rock classification in unsampled zone. The prediction is made at the center point of a shifting window by using a number of electric resistivity values within the window as input reference information. The ANN training in this study was carried out by the RPROP (Resilient backpropagation) training algorithm and Early-Stopping method for achieving a generalized training. The proposed methodology is then applied to generate a rock grade distribution on a real tunnel site where drilling investigation and resistivity survey were undertaken. The result from the ANN based prediction is compared with one from a conventional kriging method. In the comparison, the proposed ANN method shows a better agreement with the electric resistivity distribution obtained by field survey. And it is also seen that the proposed method produces a more realistic and more understandable rock grade distribution.

Parameter Calibration of Storage Function Model and Flood Forecasting (2) Comparative Study on the Flood Forecasting Methods (저류함수모형의 매개변수 보정과 홍수예측 (2) 홍수예측방법의 비교 연구)

  • Kim, Bum Jun;Song, Jae Hyun;Kim, Hung Soo;Hong, Il Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.39-50
    • /
    • 2006
  • The flood control offices of main rivers have used a storage function model to forecast flood stage in Korea and studies of flood forecasting actively have been done even now. On this account, the storage function model, which is used in flood control office, regression models and artificial neural network model are applied into flood forecasting of study watershed in this paper. The result obtained by each method are analyzed for the comparative study. In case of storage function model, this paper uses the representative parameters of the flood control offices and the optimized parameters. Regression coefficients are obtained by regression analysis and neural network is trained by backpropagation algorithm after selecting four events between 1995 to 2001. As a result of this study, it is shown that the optimized parameters are superior to the representative parameters for flood forecasting. The results obtained by multiple, robust, stepwise regression analysis, one of the regression methods, show very good forecasts. Although the artificial neural network model shows less exact results than the regression model, it can be efficient way to produce a good forecasts.

Data Mining using Instance Selection in Artificial Neural Networks for Bankruptcy Prediction (기업부도예측을 위한 인공신경망 모형에서의 사례선택기법에 의한 데이터 마이닝)

  • Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.1
    • /
    • pp.109-123
    • /
    • 2004
  • Corporate financial distress and bankruptcy prediction is one of the major application areas of artificial neural networks (ANNs) in finance and management. ANNs have showed high prediction performance in this area, but sometimes are confronted with inconsistent and unpredictable performance for noisy data. In addition, it may not be possible to train ANN or the training task cannot be effectively carried out without data reduction when the amount of data is so large because training the large data set needs much processing time and additional costs of collecting data. Instance selection is one of popular methods for dimensionality reduction and is directly related to data reduction. Although some researchers have addressed the need for instance selection in instance-based learning algorithms, there is little research on instance selection for ANN. This study proposes a genetic algorithm (GA) approach to instance selection in ANN for bankruptcy prediction. In this study, we use ANN supported by the GA to optimize the connection weights between layers and select relevant instances. It is expected that the globally evolved weights mitigate the well-known limitations of gradient descent algorithm of backpropagation algorithm. In addition, genetically selected instances will shorten the learning time and enhance prediction performance. This study will compare the proposed model with other major data mining techniques. Experimental results show that the GA approach is a promising method for instance selection in ANN.

  • PDF

Prediction of Elementary Students' Computer Literacy Using Neural Networks (신경망을 이용한 초등학생 컴퓨터 활용 능력 예측)

  • Oh, Ji-Young;Lee, Soo-Jung
    • Journal of The Korean Association of Information Education
    • /
    • v.12 no.3
    • /
    • pp.267-274
    • /
    • 2008
  • A neural network is a modeling technique useful for finding out hidden patterns from data through repetitive learning process and for predicting target values for new data. In this study, we built multilayer perceptron neural networks for prediction of the students' computer literacy based on their personal characteristics, home and social environment, and academic record of other subjects. Prediction performance of the network was compared with that of a widely used prediction method, the regression model. From our experiments, it was found that personal characteristic features best explained computer proficiency level of a student, whereas the features of home and social environment resulted in the worse prediction accuracy among all. Moreover, the developed neural network model produced far more accurate prediction than the regression model.

  • PDF