• Title/Summary/Keyword: backlight unit

Search Result 162, Processing Time 0.018 seconds

Development of CCFL with Nb/Ni Gad Electrode for high efficiency (Nb/Ni Clad 전극을 이용한 고효율 CCFL 개발)

  • Park, Ki-Duck;Yang, Seong-Su;Park, Doo-Sung;Kim, Seo-Yoon;Lim, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.441-443
    • /
    • 2005
  • According as CCFL(Cold Cathode Fluorescent lamp) of light source in Backlight unit for Note PC (Personal computer) is presently needed to low power consumption and long life time, the development focus of CCFL is going on the discharge gas, phosphor and electrode material. First of all, discharge voltage characteristic of CCFL is closely connected with electrode material For low discharge voltage, the characteristic of electrode material is needed to low work function, low sputtering ratio and superior manufacturing property. We developed new CCFL with Nb/Ni Clad electrode superior to conventional CCFL. Because Nb/Ni Clad electrode with Ni material and Nb material, the electrical characteristic is superior to other electrode materials. The electrode of Nb/Ni Clad is composed that Ni of outside material has superior manufacturing property and Nb of inside material has low work function. Nb/Ni Clad of new electrode material is made by process of Rolling mill at high pressure and heat treatment. We compared electrical characteristic of Nb/Ni clad electrode with conventional Mo electrode by measurement. Mo electrode and Nb/Ni Clad electrode of cup type with diameter 1.1 mm and length 3.0mm are used to this experiment. Material content of Mo electrode is Mo 100%. But, Nb/Ni Clad electrode is composed by content of Nb 40% and Ni 60%. The result of comparison measurement between new CCFL with Nb/Ni Clad electrode and conventional CCFL was appeared that CCFL with Nb/Ni Clad electrode had superior characteristic than conventional CCFL. As a result of experiment, we completed Note PC with low power consumption and long life time by application of new CCFL with Nb/Ni Clad electrode.

  • PDF

Fabrication of Field Emitter Arrays by Transferring Filtered Carbon Nanotubes onto Conducting Substrates

  • Jang, Eun-Soo;Goak, Jung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.311-311
    • /
    • 2009
  • Carbon nanotubes (CNTs) belong to an ideal material for field emitters because of their superior electrical, mechanical, and chemical properties together with unique geometric features. Several applications of CNTs to field emitters have been demonstrated in electron emission devices such as field emission display (FED), backlight unit (BLU), X-ray source, etc. In this study, we fabricated a CNT cathode by using filtration processes. First, an aqueous CNT solution was prepared by ultrasonically dispersing purified single-walled CNTs (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). The aqueous CNT solution in a milliliter or even several tens of micro-litters was filtered by an alumina membrane through the vacuum filtration, and an ultra-thin CNT film was formed onto the alumina membrane. Thereafter, the alumina membrane was solvated by acetone, and the floating CNT film was easily transferred to indium-tin-oxide (ITO) glass substrate in an area defined as 1 cm with a film mask. The CNT film was subjected to an activation process with an adhesive roller, erecting the CNTs up to serve as electron emitters. In order to measure their luminance characteristics, an ITO-coated glass substrate having phosphor was employed as an anode plate. Our field emitter array (FEA) was fairly transparent unlike conventional FEAs, which enabled light to emit not only through the anode frontside but also through the cathode backside, where luminace on the cathode backside was higher than that on the anode frontside. Futhermore, we added a reflecting metal layer to cathode or anode side to enhance the luminance of light passing through the other side. In one case, the metal layer was formed onto the bottom face of the cathode substrate and reflected the light back so that light passed only through the anode substrate. In the other case, the reflecting layer coated on the anode substrate made all light go only through the cathode substrate. Among the two cases, the latter showed higher luminance than the former. This study will discuss the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the either side.

  • PDF