• Title/Summary/Keyword: background map

Search Result 375, Processing Time 0.023 seconds

Generating Motion- and Distortion-Free Local Field Map Using 3D Ultrashort TE MRI: Comparison with T2* Mapping

  • Jeong, Kyle;Thapa, Bijaya;Han, Bong-Soo;Kim, Daehong;Jeong, Eun-Kee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.4
    • /
    • pp.328-340
    • /
    • 2019
  • Purpose: To generate phase images with free of motion-induced artifact and susceptibility-induced distortion using 3D radial ultrashort TE (UTE) MRI. Materials and Methods: The field map was theoretically derived by solving Laplace's equation with appropriate boundary conditions, and used to simulate the image distortion in conventional spin-warp MRI. Manufacturer's 3D radial imaging sequence was modified to acquire maximum number of radial spokes in a given time, by removing the spoiler gradient and sampling during both rampup and rampdown gradient. Spoke direction randomly jumps so that a readout gradient acts as a spoiling gradient for the previous spoke. The custom raw data was reconstructed using a homemade image reconstruction software, which is programmed using Python language. The method was applied to a phantom and in-vivo human brain and abdomen. The performance of UTE was compared with 3D GRE for phase mapping. Local phase mapping was compared with T2* mapping using UTE. Results: The phase map using UTE mimics true field-map, which was theoretically calculated, while that using 3D GRE revealed both motion-induced artifact and geometric distortion. Motion-free imaging is particularly crucial for application of phase mapping for abdomen MRI, which typically requires multiple breathold acquisitions. The air pockets, which are caught within the digestive pathway, induce spatially varying and large background field. T2* map, that was calculated using UTE data, suffers from non-uniform T2* value due to this background field, while does not appear in the local phase map of UTE data. Conclusion: Phase map generated using UTE mimicked the true field map even when non-zero susceptibility objects were present. Phase map generated by 3D GRE did not accurately mimic the true field map when non-zero susceptibility objects were present due to the significant field distortion as theoretically calculated. Nonetheless, UTE allows for phase maps to be free of susceptibility-induced distortion without the use of any post-processing protocols.

Automatic Face Tracking based on Active Contour Model using Two-Level Composite Gradient Map (두 단계 합성 기울기 맵을 이용한 활성 외곽선 모델 기반 자동 얼굴 추적)

  • Kim, Soo-Kyung;Jang, Yo-Jin;Hong, Helen
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.11
    • /
    • pp.901-911
    • /
    • 2009
  • In this paper, we propose a construction technique of two-level composite gradient map to automatically track a face with large movement in successive frames. Our method is composed of three main steps. First, the gradient maps with two-level resolution are generated for fast convergence of active contour. Second, to recognize the variations of face between successive frames and remove the neighbor background, weighted composite gradient map is generated by combining the composite gradient map and difference mask of previous and current frames. Third, to prevent active contour from converging local minima, the energy slope is generated by using closing operation. In addition, the fast closing operation is proposed to accelerate the processing time of closing operation. For performance evaluation, we compare our method with previous active contour model-based face tracking methods using a visual inspection, robustness test and processing time. Experimental results show that our method can effectively track the face with large movement and robustly converge to the optimal position even in frames with complicated background.

Depth-map Preprocessing Algorithm Using Two Step Boundary Detection for Boundary Noise Removal (경계 잡음 제거를 위한 2단계 경계 탐색 기반의 깊이지도 전처리 알고리즘)

  • Pak, Young-Gil;Kim, Jun-Ho;Lee, Si-Woong
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.555-564
    • /
    • 2014
  • The boundary noise in image syntheses using DIBR consists of noisy pixels that are separated from foreground objects into background region. It is generated mainly by edge misalignment between the reference image and depth map or blurred edge in the reference image. Since hole areas are generally filled with neighboring pixels, boundary noise adjacent to the hole is the main cause of quality degradation in synthesized images. To solve this problem, a new boundary noise removal algorithm using a preprocessing of the depth map is proposed in this paper. The most common way to eliminate boundary noise caused by boundary misalignment is to modify depth map so that the boundary of the depth map can be matched to that of the reference image. Most conventional methods, however, show poor performances of boundary detection especially in blurred edge, because they are based on a simple boundary search algorithm which exploits signal gradient. In the proposed method, a two-step hierarchical approach for boundary detection is adopted which enables effective boundary detection between the transition and background regions. Experimental results show that the proposed method outperforms conventional ones subjectively and objectively.

Object Detection Algorithm in Sea Environment Based on Frequency Domain (주파수 도메인에 기반한 해양 물표 검출 알고리즘)

  • Park, Ki-Tae;Jeong, Jong-Myeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.494-499
    • /
    • 2012
  • In this paper, a new method for detecting various objects that can be risks to safety navigation in sea environment is proposed. By analysing Infrared(IR) images obtained from various sea environments, we could find out that object regions include both horizontal and vertical direction edges while background regions of sea surface mainly include vertical direction edges. Therefore, we present an approach to detecting object regions considering horizontal and vertical edges. To this end, in the first step, image enhancement is performed by suppressing noises such as sea glint and complex clutters using a statistical filter. In the second step, a horizontal edge map and a vertical edge map are generated by 1-D Discrete Cosine Transform technique. Then, a combined map integrating the horizontal and the vertical edge maps is generated. In the third step, candidate object regions are detected by a adaptive thresholding method. Finally, exact object regions are extracted by eliminating background and clutter regions based on morphological operation.

3D Head Pose Estimation Using The Stereo Image (스테레오 영상을 이용한 3차원 포즈 추정)

  • 양욱일;송환종;이용욱;손광훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1887-1890
    • /
    • 2003
  • This paper presents a three-dimensional (3D) head pose estimation algorithm using the stereo image. Given a pair of stereo image, we automatically extract several important facial feature points using the disparity map, the gabor filter and the canny edge detector. To detect the facial feature region , we propose a region dividing method using the disparity map. On the indoor head & shoulder stereo image, a face region has a larger disparity than a background. So we separate a face region from a background by a divergence of disparity. To estimate 3D head pose, we propose a 2D-3D Error Compensated-SVD (EC-SVD) algorithm. We estimate the 3D coordinates of the facial features using the correspondence of a stereo image. We can estimate the head pose of an input image using Error Compensated-SVD (EC-SVD) method. Experimental results show that the proposed method is capable of estimating pose accurately.

  • PDF

Efficient Image Segmentation Algorithm Based on Improved Saliency Map and Superpixel (향상된 세일리언시 맵과 슈퍼픽셀 기반의 효과적인 영상 분할)

  • Nam, Jae-Hyun;Kim, Byung-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.7
    • /
    • pp.1116-1126
    • /
    • 2016
  • Image segmentation is widely used in the pre-processing stage of image analysis and, therefore, the accuracy of image segmentation is important for performance of an image-based analysis system. An efficient image segmentation method is proposed, including a filtering process for super-pixels, improved saliency map information, and a merge process. The proposed algorithm removes areas that are not equal or of small size based on comparison of the area of smoothed superpixels in order to maintain generation of a similar size super pixel area. In addition, application of a bilateral filter to an existing saliency map that represents human visual attention allows improvement of separation between objects and background. Finally, a segmented result is obtained based on the suggested merging process without any prior knowledge or information. Performance of the proposed algorithm is verified experimentally.

Risk factors for canine magnesium ammonium phosphate urolithiasis associated with bacterial infection

  • Uttamamul, Nahathai;Jitpean, Supranee;Lulitanond, Aroonlug;Wonglakorn, Lumyai;Sae-ung, Nattaya;Boonsiri, Patcharee;Daduang, Jureerut;Tavichakorntrakool, Ratree
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.6.1-6.8
    • /
    • 2022
  • Background: With limited information available, the association among urinary tract infections, urease-producing bacteria and the presence of magnesium ammonium phosphate (MAP) urolithiasis in canines in Thailand requires more study. Objectives: This study aimed to investigate the association between demographic characteristics of canines and the presence of MAP urolithiasis in canines, and to evaluate antimicrobial susceptibility patterns of bacteria isolated from canine uroliths. Methods: A total of 56 canines admitted for treatment with surgical removal of uroliths were recruited. Demographic characteristics and clinical chemistry data were recorded. Bacteria isolated from the removed uroliths were identified. Chemical compositions of the uroliths were analyzed by Fourier transform infrared spectrometer. Potential risk factors were determined with univariable and multivariable logistic regression analyses. Results: Of 56 canine urolithiasis, bacteria were isolated from uroliths of 38 canines (27 MAP and 11 non-MAP) but not from uroliths of 18 canines (5 MAP and 13 non-MAP). The most common bacteria found in nidus of MAP uroliths was Staphylococcus pseudintermedius (approximately 51%). An antimicrobial resistance was frequently found in Staphylococci isolates (42.86%). Multivariate logistic regression analysis showed that the predictors of MAP urolith in canine urolithiasis were being female (p = 0.044; adjusted odds ratio [OR], 10.22; 95% confidence interval [CI], 1.06-98.24) and the positive urolith culture (p = 0.012; adjusted OR, 8.60; 95% CI, 1.60-46.30). Conclusions: Our results indicate that S. pseudintermedius (a urease-producing bacterium) is the major causative bacteria of MAP uroliths. A positive urolith culture and being female are risk factors of MAP urolithiasis in canines.

Object Tracking And Elimination Using Lod Edge Maps Generated from Modified Canny Edge Maps (수정된 캐니 에지 맵으로부터 만들어진 LOD 에지 맵을 이용한 물체 추적 및 소거)

  • Park, Ji-Hun;Jang, Yung-Dae;Lee, Dong-Hun;Lee, Jong-Kwan;Ham, Mi-Ok
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.171-182
    • /
    • 2007
  • We propose a simple method for tracking a nonparameterized subject contour in a single video stream with a moving camera and changing background. Then we present a method to eliminate the tracked contour object by replacing with the background scene we get from other frame. First we track the object using LOD (Level-of-Detail) canny edge maps, then we generate background of each image frame and replace the tracked object in a scene by a background image from other frame that is not occluded by the tracked object. Our tracking method is based on level-of-detail (LOD) modified Canny edge maps and graph-based routing operations on the LOD maps. We get more edge pixels along LOD hierarchy. Our accurate tracking is based on reducing effects from irrelevant edges by selecting the stronger edge pixels, thereby relying on the current frame edge pixel as much as possible. The first frame background scene is determined by camera motion, camera movement between two image frames, and other background scenes are computed from the previous background scenes. The computed background scenes are used to eliminate the tracked object from the scene. In order to remove the tracked object, we generate approximated background for the first frame. Background images for subsequent frames are based on the first frame background or previous frame images. This approach is based on computing camera motion. Our experimental results show that our method works nice for moderate camera movement with small object shape changes.

Automatic Object Segmentation and Background Composition for Interactive Video Communications over Mobile Phones

  • Kim, Daehee;Oh, Jahwan;Jeon, Jieun;Lee, Junghyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • This paper proposes an automatic object segmentation and background composition method for video communication over consumer mobile phones. The object regions were extracted based on the motion and color variance of the first two frames. To combine the motion and variance information, the Euclidean distance between the motion boundary pixel and the neighboring color variance edge pixels was calculated, and the nearest edge pixel was labeled to the object boundary. The labeling results were refined using the morphology for a more accurate and natural-looking boundary. The grow-cut segmentation algorithm begins in the expanded label map, where the inner and outer boundary belongs to the foreground and background, respectively. The segmented object region and a new background image stored a priori in the mobile phone was then composed. In the background composition process, the background motion was measured using the optical-flow, and the final result was synthesized by accurately locating the object region according to the motion information. This study can be considered an extended, improved version of the existing background composition algorithm by considering motion information in a video. The proposed segmentation algorithm reduces the computational complexity significantly by choosing the minimum resolution at each segmentation step. The experimental results showed that the proposed algorithm can generate a fast, accurate and natural-looking background composition.

  • PDF

Image saliency detection based on geodesic-like and boundary contrast maps

  • Guo, Yingchun;Liu, Yi;Ma, Runxin
    • ETRI Journal
    • /
    • v.41 no.6
    • /
    • pp.797-810
    • /
    • 2019
  • Image saliency detection is the basis of perceptual image processing, which is significant to subsequent image processing methods. Most saliency detection methods can detect only a single object with a high-contrast background, but they have no effect on the extraction of a salient object from images with complex low-contrast backgrounds. With the prior knowledge, this paper proposes a method for detecting salient objects by combining the boundary contrast map and the geodesics-like maps. This method can highlight the foreground uniformly and extract the salient objects efficiently in images with low-contrast backgrounds. The classical receiver operating characteristics (ROC) curve, which compares the salient map with the ground truth map, does not reflect the human perception. An ROC curve with distance (distance receiver operating characteristic, DROC) is proposed in this paper, which takes the ROC curve closer to the human subjective perception. Experiments on three benchmark datasets and three low-contrast image datasets, with four evaluation methods including DROC, show that on comparing the eight state-of-the-art approaches, the proposed approach performs well.