• 제목/요약/키워드: back-propagation neural networks

검색결과 437건 처리시간 0.027초

신경회로망을 이용한 수도 증발산량 예측 -백프로파게이션과 카운터프로파게이션 알고리즘의 적용- (Estimating Evapotranspiration of Rice Crop Using Neural Networks -Application of Back-propagation and Counter-propagation Algorithm-)

  • 이남호;정하우
    • 한국농공학회지
    • /
    • 제36권2호
    • /
    • pp.88-95
    • /
    • 1994
  • This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration. Two neural networks were developed to forecast daily evapotranspiration of the rice crop with back-propagation and counter-propagation algorithm. The neural network trained by back-propagation algorithm with delta learning rule is a three-layer network with input, hidden, and output layers. The other network with counter-propagation algorithm is a four-layer network with input, normalizing, competitive, and output layers. Training neural networks was conducted using daily actual evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity, and pan evaporation. During the training, neural network parameters were calibrated. The trained networks were applied to a set of field data not used in the training. The created response of the back-propagation network was in good agreement with desired values and showed better performances than the counter-propagation network did. Evaluating the neural network performance indicates that the back-propagation neural network may be applied to the estimation of evapotranspiration of the rice crop. This study does not provide with a conclusive statement as to the ability of a neural network to evapotranspiration estimating. More detailed study is required for better understanding and evaluating the behavior of neural networks.

  • PDF

역전파 알고리즘을 이용한 경계결정의 구성에 관한 연구 (The Structure of Boundary Decision Using the Back Propagation Algorithms)

  • 이지영
    • 정보학연구
    • /
    • 제8권1호
    • /
    • pp.51-56
    • /
    • 2005
  • The Back propagation algorithm is a very effective supervised training method for multi-layer feed forward neural networks. This paper studies the decision boundary formation based on the Back propagation algorithm. The discriminating powers of several neural network topology are also investigated against five manually created data sets. It is found that neural networks with multiple hidden layer perform better than single hidden layer.

  • PDF

문자인식 시스템을 위한 신경망 입력패턴 생성에 관한 연구 (A Study on Input Pattern Generation of Neural-Networks for Character Recognition)

  • 신명준;김성종;손영익
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.129-131
    • /
    • 2006
  • The performances of neural network systems mainly depend on the kind and the number of input patterns for its training. Hence, the kind of input patterns as well as its number is very important for the character recognition system using back-propagation network. The more input patters are used, the better the system recognizes various characters. However, training is not always successful as the number of input patters increases. Moreover, there exists a limit to consider many input patterns of the recognition system for cursive script characters. In this paper we present a new character recognition system using the back-propagation neural networks. By using an additional neural network, an input pattern generation method is provided for increasing the recognition ratio and a successful training. We firstly introduce the structure of the proposed system. Then, the character recognition system is investigated through some experiments.

  • PDF

역전파신경회로망을 이용한 피로손상모델링에 관한 연구 (A Study on Fatigue Damage Modeling Using Back-Propagation Neural Networks)

  • 조석수;장득열;주원식
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.258-269
    • /
    • 1999
  • It is important to evaluate fatigue damage of in-service material in respect to assure safety and remaining fatigue life in structure and mechanical components under cyclic load . Fatigue damage is represented by mathematical modelling with crack growth rate da/dN and cycle ration N/Nf and is detected by X-ray diffraction and ultrasonic wave method etc. But this is estimated generally by single parameter but influenced by many test conditions The characteristics of it indicates fatigue damage has complex fracture mechanism. Therefore, in this study we propose that back-propagation neural networks on the basis of ration of X-ray half-value breath B/Bo, fractal dimension Df and fracture mechanical parameters can construct artificial intelligent networks estimating crack growth rate da/dN and cycle ratio N/Nf without regard to stress amplitude Δ $\sigma$.

  • PDF

신경회로망을 이용한 이득 자동조정 서보제어기 설계 및 구현 (Design of PID Type servo controller using Neural networks and it′s Implementation)

  • 이상욱;김한실
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.229-229
    • /
    • 2000
  • Conventional gain-tuning methods such as Ziegler-Nickels methods, have many disadvantages that optimal control ler gain should be tuned manually. In this paper, modified PID controllers which include self-tuning characteristics are proposed. Proposed controllers automatically tune the PID gains in on-1ine using neural networks. A new learning scheme was proposed for improving learning speed in neural networks and satisfying the real time condition. In this paper, using a nonlinear mapping capability of neural networks, we derive a tuning method of PID controller based on a Back propagation(BP)method of multilayered neural networks. Simulated and experimental results show that the proposed method can give the appropriate parameters of PID controller when it is implemented to DC Motor.

  • PDF

Back Propagation 알고리즘을 이용한 산업용 로봇의 견실 제어 (Robust Control of Industrial Robot Based on Back Propagation Algorithm)

  • 윤주식;이희섭;윤대식;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.253-257
    • /
    • 2004
  • Neural networks are works are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division(corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

PSD 센서 및 Back Propagation 알고리즘을 이용한 AM1 로봇의 견질 제어 (Robust Control of AM1 Robot Using PSD Sensor and Back Propagation Algorithm)

  • 정동연;한성현
    • 한국산업융합학회 논문집
    • /
    • 제7권2호
    • /
    • pp.167-172
    • /
    • 2004
  • Neural networks are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division (Corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

FPGA를 이용한 웨어러블 디바이스를 위한 역전파 알고리즘 구현 (Implementation of back propagation algorithm for wearable devices using FPGA)

  • 최현식
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제15권2호
    • /
    • pp.7-16
    • /
    • 2019
  • 신경 회로망을 구현하기 위해 다양한 시도들이 이루어지고 있으며, 하드웨어적인 개선을 위해 전용 칩 개발이 이루어지고 있다. 이러한 신경 회로망을 웨어러블 디바이스에 적용하기 위해서는 소형화와 저전력 동작이 필수적이다. 이러한 관점에서 적합한 구현 방법은 FPGA (field programmable gate array)를 사용한 디지털 회로 설계이다. 이 시스템을 구현하기 위해서는 성능 향상을 위해 신경 회로망의 많은 부분을 차지하는 학습 알고리즘을 FPGA 내에 구현하여야 한다. 본 논문에서는 FPGA를 이용하여 다양한 학습 알고리즘 중 역전파 알고리즘을 구현하였으며, 구현 된 신경 회로망은 OR 게이트 연산을 통해 검증되었다. 또한 이러한 신경 회로망을 활용하여 다양한 사용자의 생체 신호 측정 결과를 분석할 수 있음을 확인하였다.

신경망을 이용한 고강도 콘크리트 배합설계모델에 관한 연구 (A Study on Mix Design Model of High Strength Concrete using Neural Networks)

  • 이유진;이선관;김영수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2012년도 추계 학술논문 발표대회
    • /
    • pp.253-254
    • /
    • 2012
  • The purpose of this study is to suggest and verify high-strength concrete mix design model applying neural network theory, in order to minimize effort and time wasted by using trial and error method utill now. There are 7 input and 2 output to predict mix design. 40 data of mix design were learned with back-propagation algorithm. Then they are repeatedly learned back-propagation in neural network theory. Also, to verify predicted model, we analyzed and compared value predicted from 60MPa mix design with value measured by actual compressive strength test.

  • PDF

역전파 신경회로망을 이용한 피로 균열성장 모델링에 관한 연구 (A study on fatigue crack growth modelling by back propagation neural networks)

  • 주원식;조석수
    • 한국해양공학회지
    • /
    • 제10권1호
    • /
    • pp.65-74
    • /
    • 1996
  • Up to now, the existing crack growth modelling has used a mathematical approximation but an assumed function have a great influence on this method. Especially, crack growth behavior that shows very strong nonlinearity needed complicated function which has difficulty in setting parameter of it. The main characteristics of neural network modelling to engineering field are simple calculations and absence of assumed function. In this paper, after discussing learning and generalization of neural networks, we performed crack growth modelling on the basis of above learning algorithms. J'-da/dt relation predicted by neural networks shows that test condition with unlearned data is simulated well within estimated mean error(5%).

  • PDF