• 제목/요약/키워드: back propagation through time(BPTT)

검색결과 1건 처리시간 0.017초

딥러닝 기반 침수 수위 예측: 미국 텍사스 트리니티강 사례연구 (Water Level Forecasting based on Deep Learning: A Use Case of Trinity River-Texas-The United States)

  • 트란 광 카이;송사광
    • 정보과학회 논문지
    • /
    • 제44권6호
    • /
    • pp.607-612
    • /
    • 2017
  • 도시에서 홍수 피해를 방지하기 위한 침수를 예측하기 위해 본 논문에서는 딥러닝(Deep Learning) 기법을 적용한다. 딥러닝 기법 중 시계열 데이터 분석에 적합한 Recurrent Neural Networks (RNNs)을 활용하여 강의 수위 관측 데이터를 학습하고 침수 가능성을 예측하였다. 예측 정확도 검증을 위해 사용한 데이터는 미국의 트리니티강의 데이터로, 학습을 위해 2013 년부터 2015 년까지 데이터를 사용하였고 평가 데이터로는 2016 년 데이터를 사용하였다. 입력은 16개의 레코드로 구성된 15분단위의 시계열 데이터를 사용하였고, 출력으로는 30분과 60분 후의 강의 수위 예측 정보이다. 실험에 사용한 딥러닝 모델들은 표준 RNN, RNN-BPTT(Back Propagation Through Time), LSTM(Long Short-Term Memory)을 사용했는데, 그 중 LSTM의 NE(Nash Efficiency)가 0.98을 넘는 정확도로 기존 연구에 비해 매우 높은 성능 향상을 보였고, 표준 RNN과 RNN-BPTT에 비해서도 좋은 성능을 보였다.