• Title/Summary/Keyword: back propagation algorithm

Search Result 898, Processing Time 0.033 seconds

A Study on ECG Oata Compression Algorithm Using Neural Network (신경회로망을 이용한 심전도 데이터 압축 알고리즘에 관한 연구)

  • 김태국;이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.191-202
    • /
    • 1991
  • This paper describes ECG data compression algorithm using neural network. As a learning method, we use back error propagation algorithm. ECG data compression is performed using learning ability of neural network. CSE database, which is sampled 12bit digitized at 500samp1e/sec, is selected as a input signal. In order to reduce unit number of input layer, we modify sampling ratio 250samples/sec in QRS complex, 125samples/sec in P & T wave respectively. hs a input pattern of neural network, from 35 points backward to 45 points forward sample Points of R peak are used.

  • PDF

A Study on the Spoken Korean Citynames Using Multi-Layered Perceptron of Back-Propagation Algorithm (오차 역전파 알고리즘을 갖는 MLP를 이용한 한국 지명 인식에 대한 연구)

  • Song, Do-Sun;Lee, Jae-Gheon;Kim, Seok-Dong;Lee, Haing-Sei
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.5-14
    • /
    • 1994
  • This paper is about an experiment of speaker-independent automatic Korean spoken words recognition using Multi-Layered Perceptron and Error Back-propagation algorithm. The object words are 50 citynames of D.D.D local numbers. 43 of those are 2 syllables and the rest 7 are 3 syllables. The words were not segmented into syllables or phonemes, and some feature components extracted from the words in equal gap were applied to the neural network. That led independent result on the speech duration, and the PARCOR coefficients calculated from the frames using linear predictive analysis were employed as feature components. This paper tried to find out the optimum conditions through 4 differerent experiments which are comparison between total and pre-classified training, dependency of recognition rate on the number of frames and PAROCR order, recognition change due to the number of neurons in the hidden layer, and the comparison of the output pattern composition method of output neurons. As a result, the recognition rate of $89.6\%$ is obtaimed through the research.

  • PDF

A Study of the Automatic Berthing System of a Ship Using Artificial Neural Network (인공신경망을 이용한 선박의 자동접안 제어에 관한 연구)

  • Bae, Cheol-Han;Lee, Seung-Keon;Lee, Sang-Eui;Kim, Ju-Han
    • Journal of Navigation and Port Research
    • /
    • v.32 no.8
    • /
    • pp.589-596
    • /
    • 2008
  • In this paper, Artificial Neural Network(ANN) is applied to automatic berthing control for a ship. ANN is suitable for a maneuvering such as ship's berthing, because it can describe non-linearity of the system. Multi-layer perceptron which has more than one hidden layer between input layer and output layer is applied to ANN. Using a back-propagation algorithm with teaching data, we trained ANN to get a minimal error between output value and desired one. For the automatic berthing control of a containership, we introduced low speed maneuvering mathematical models. The berthing control with the structure of 8 input layer units in ANN is compared to 6 input layer units. From the simulation results, the berthing conditions are satisfied, even though the berthing paths are different.

Recognition of Vehicle Number Plate Using Color Decomposition Method and Back Propagation Neural Network (색 분해법과 역전파 신경 회로망을 이용한 차량 번호판 인식)

  • 이재수;김수인;서춘원
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.46-52
    • /
    • 1998
  • In this paper, after inputting the computer with the attached number plate on the vehicle, using it, the color decomposition method and back propagation neural network proposed the extractable method of the vehicle number plate at high speed. This method separated R, G, B signal form input moving vehicle image to computer through video camera, then after transform this R, G, B signal into input image data of the computer by using color depth of vehicle number plate and store up binary value in the memory frame buffer. After adapting character's recognition algorithm, also improving this, by adapting back propagation neural network makes the vehicle number plate recognition system. Also minimalizing the similar color's confusion, adapting horizontal and vertical extracting algorithm by using the vehicle's rectangular architecture shows the extract and character's recognition of the vehicle number plate at high speed.

  • PDF

A Simple Connection Pruning Algorithm and its Application to Simulated Random Signal Classification (연결자 제거를 위한 간단한 알고리즘과 모의 랜덤 신호 분류에의 응용)

  • Won, Yong-Gwan;Min, Byeong-Ui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.2
    • /
    • pp.381-389
    • /
    • 1996
  • A simple modification of the standard back-propagation algorithm to eliminate redundant connections(weights and biases) is described. It was motivated by speculations from the distribution of the magnitudes of the weights and the biases, analysis of the classification boundary, and the nonlinearity of the sigmoid function. After initial training, this algorithm eliminates all connections of which magnitude is below a threshold by setting them to zero. The algorithm then conducts retraining in which all weights and biases are adjusted to allow important ones to recover. In studies with Boolean functions, the algorithm reconstructed the theoretical minimum architecture and eliminated the connections which are not necessary to solve the functions. For simulated random signal classification problems, the algorithm produced the result which is consistent with the idea that easier problems require simpler networks and yield lower misclassification rates. Furthermore, in comparison, our algorithm produced better generalization than the standard algorithm by reducing over fitting and pattern memorization problems.

  • PDF

Identification of Defect Type by Analysis of a Single PD Pulse in Gas Insulated Structure (가스절연 구조에서 단일 부분방전펄스 분석에 의한 결함 판별)

  • Jo, Hyang-Eun;Kim, Sun-Jae;Jeong, Gi-Woo;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.320-325
    • /
    • 2015
  • This paper dealt with a defect identification algorithm which is based on single partial discharge (PD) pulse analysis in gas insulated structure. Four types of electrode systems such as a needle-plane, a plane-needle, a free particle and a crack inside spacer were fabricated to simulate defects in gas insulated switchgear (GIS). We measured single PD pulse by an oscilloscope with a sampling rate of 5 GS/s and a frequency bandwidth of 1 GHz. Data aquisition and signal processing were controlled by a LabVIEW program. Physical shapes of PD pulses were compared with kurtosis, skewness and time-based parameters as rising time, falling time and pulse-width. These parameters were analysed by an algorithm with a back propagation algorithm (BPA). By applying the algorithm, the identification rate was 97% for the needle-plane electrode, 96% for the plane-needle electrode, 91% for the free particle and 93% for the crack inside spacer. The results verified that the algorithm could identify the type of defects in GIS.

The methods of recognition of consonants(voiced stops) by Neural Network (신경망에 의한 초성자음(ㄱ, ㄷ, ㅂ)의 인식방법)

  • 김석동
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.73-77
    • /
    • 1991
  • As the basic analysis to solve the stop consonants in phoneme based speech recognition using Back Propagation learning algorithm, changes in hidden units, training set and iteration. Also we propose an efficient processing method of separation between consonants and vowels.

  • PDF

선형 신경 회로망을 이용한 영상 Thinning 구현

  • 박병준;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.27-30
    • /
    • 2000
  • 본 논문에서는 선형 이진 신경회로망(Linear Binary Neural Network)을 이용하여 이진 영상으로부터 골격(skeleton)을 추출하는 병렬 구조를 제안하였다. 기존의 골격 추출 알고리즘으로부터 이진함수를 추출하고 이를 MSP Term Grouping Algorithm을 이용하여 학습시켰다. 결과에서는 기존의 역전파(Back-propagation) 학습알고리즘을 사용한 신경회로망보다 더 쉽게 하드웨어로 구현할 수 있음을 보여준다.

  • PDF

Intelligent control system design of track vehicle based-on fuzzy logic (퍼지 로직에 의한 궤도차량의 지능제어시스템 설계)

  • 김종수;한성현;조길수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.131-134
    • /
    • 1997
  • This paper presents a new approach to the design of intelligent control system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.

  • PDF

Back-propagation Algorithm with a zero compensated Sigmoid-prime function (영점 보상 Sigmoid-prime 함수에 의한 역전파 알고리즘)

  • 이왕국;김정엽;이준재;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.115-122
    • /
    • 1994
  • The problems in back-propagation(BP) generally are learning speed and misclassification due to lacal minimum. In this paper, to solve these problems, the classical modified methods of BP are reviewed and an extension of the BP to compensate the sigmoide-prime function around the extremity where the actual output of a unit is close to zero or one is proposed. The proposed method is not onlu faster than the conventional methods in learning speed but has an advantage of setting variables easily because it shows good classification results over the vast and uncharted space about the variations of learning rate, etc.. And it is simple for hardware implementation.

  • PDF