• Title/Summary/Keyword: back propagation (BP)

Search Result 154, Processing Time 0.021 seconds

Real-Time Control of Variable Load DC Servo Motor Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Chung, In-Suk;Hong, Sung-Woo;Kim, Lark-Kyo;Nam, Moon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.782-784
    • /
    • 1999
  • This paper deals with speed control of DC-servo motor using a Back-Propagation(BP) Learning Algorism and a PID controller Conventionally in the industrial control, PID controller has been used. But the PID controller produced suitable parameter of each system and also variable of PID controller should be changed enviroment, disturbance, load. So this paper revealed for experimental, a neural network and a PID controller combined system using developed speed characters of a Variable Load DC-servo motor. The parameters of the plant are determined by neural network perform on on-line system after training the neural network on off-line system.

  • PDF

Comparison with Finger Print Method and NN as PD Classification (PD 분류에 있어서 핑거프린트법과 신경망의 비교)

  • Park, Sung-Hee;Park, Jae-Yeol;Lee, Kang-Won;Kang, Seong-Hwa;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1163-1167
    • /
    • 2003
  • As a PD classification method, statistical distribution parameters have been used during several ten years. And this parameters are recently finger print method, NN(Neural Network) and etc. So in this paper we studied finger print method and NN with BP(Back propagation) learning algorithm using the statistical distribution parameter, and compared with two method as classification method. As a result of comparison, classification of NN is more good result than Finger print method in respect to calculation speed, visible effect and simplicity. So, NN has more advantage as a tool for PD classification.

  • PDF

Dynamic Neural Units and Genetic Algorithms With Applications to the Control of Unknown Nonlinear Systems (Geneo-tic Algorithms을 이용한 비선형 동적 시스템 제어)

  • Kim, Hee-Sook;Park, Jong-Chun;Lee, Keun-Wang;Cho, Hyeon-Seob
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2484-2486
    • /
    • 2004
  • "Dynamic Neural Unit"(DNU) based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms. such as the back propagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its trainin.

  • PDF

Application of electronic nose and PLD chip design using pattern recognition method (패턴 인식 기법의 PLD 칩 설계 및 전자코 활용)

  • 장으뜸;정완영
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.297-300
    • /
    • 2002
  • Application of electronic nose and PLD chip design was developed to be used in gas discrimination system for limited kinds of gas. An array of 4 metal oxide gas sensors with different selectivity patterns were used in order to measure gases. BP(Back Propagation) algorithm was designed and implemented on CPLD of two hundred thousand gate level chips by VHDL language for processing input signals from 4 kinds of gas sensors. This module successfully discriminated 4 kinds of gases and displayed the results on LCD and LED. The developed module could be used for various applications in the field of food process control and alcohol judgment.

  • PDF

A rule base derivation method using neural networks for the fuzzy logic control of robot manipulators (로봇 매니퓰레이터의 퍼지논리 제어를 위한 신경회로망을 사용한 규칙 베이스 유도방법)

  • 이석원;경계현;김대원;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.441-446
    • /
    • 1992
  • We propose a control architecture for the fuzzy logic control of robot manipulators and a rule base derivation method for a fuzzy logic controller(FLC) using a neural network. The control architecture is composed of FLC and PD(positional Derivative) controller. And a neural network is designed in consideration of the FLC's structure. After the training is finished by BP(Back Propagation) and FEL(Feedback Error Learning) method, the rule base is derived from the neural network and is reduced through two stages - smoothing, logical reduction. Also, we show the performance of the control architecture through the simulation to verify the effectiveness of our proposed method.

  • PDF

On design of a control scheme using fuzzy-neural network (퍼지-뉴럴 합성을 이용한 제어기의 설계)

  • Lim, Kwang-Woo;Cho, Hyun-Chan;Kang, Hoon;Jeon, Hong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.117-122
    • /
    • 1992
  • The fuzzy-neural hybrid control system utilizing the fuzzy-neural network(FNN) will be presented in this paper. The basic structure of the controller is the parallel combination of a conventional P-controller and a FNN. Such a combination can guarantee the stability of a plant at initial stage before the rules are completely created. And a method how to automatically tunning the parameters of the FNN will be proposed with error back-propagation(BP) algorithm. Finally the effectiveness of the proposed strategy will be verified by computer simulations using a two DOF robot manipulator.

  • PDF

Chip design and application of gas classification function using MLP classification method (MLP분류법을 적용한 가스분류기능의 칩 설계 및 응용)

  • 장으뜸;서용수;정완영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.309-312
    • /
    • 2001
  • A primitive gas classification system which can classify limited species of gas was designed and simulated. The 'electronic nose' consists of an array of 4 metal oxide gas sensors with different selectivity patterns, signal collecting unit and a signal pattern recognition and decision Part in PLD(programmable logic device) chip. Sensor array consists of four commercial, tin oxide based, semiconductor type gas sensors. BP(back propagation) neutral networks with MLP(Multilayer Perceptron) structure was designed and implemented on CPLD of fifty thousand gate level chip by VHDL language for processing the input signals from 4 gas sensors and qualification of gases in air. The network contained four input units, one hidden layer with 4 neurons and output with 4 regular neurons. The 'electronic nose' system was successfully classified 4 kinds of industrial gases in computer simulation.

  • PDF

Evaluation of concrete compressive strength based on an improved PSO-LSSVM model

  • Xue, Xinhua
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.505-511
    • /
    • 2018
  • This paper investigates the potential of a hybrid model which combines the least squares support vector machine (LSSVM) and an improved particle swarm optimization (IMPSO) techniques for prediction of concrete compressive strength. A modified PSO algorithm is employed in determining the optimal values of LSSVM parameters to improve the forecasting accuracy. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed IMPSO-LSSVM model. Further, predictions from five models (the IMPSO-LSSVM, PSO-LSSVM, genetic algorithm (GA) based LSSVM, back propagation (BP) neural network, and a statistical model) were compared with the experimental data. The results show that the proposed IMPSO-LSSVM model is a feasible and efficient tool for predicting the concrete compressive strength with high accuracy.

Image Recognition by Learning Multi-Valued Logic Neural Network

  • Kim, Doo-Ywan;Chung, Hwan-Mook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.215-220
    • /
    • 2002
  • This paper proposes a method to apply the Backpropagation(BP) algorithm of MVL(Multi-Valued Logic) Neural Network to pattern recognition. It extracts the property of an object density about an original pattern necessary for pattern processing and makes the property of the object density mapped to MVL. In addition, because it team the pattern by using multiple valued logic, it can reduce time f3r pattern and space fer memory to a minimum. There is, however, a demerit that existed MVL cannot adapt the change of circumstance. Through changing input into MVL function, not direct input of an existed Multiple pattern, and making it each variable loam by neural network after calculating each variable into liter function. Error has been reduced and convergence speed has become fast.

Adaptive-Tuning of PID Controller using Self-Recurrent Neural Network (자기순환 신경망을 이용한 PID 제어기의 적응동조)

  • 박광현;허진영;하홍곤
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.121-124
    • /
    • 2001
  • In industrial actual control system, PID controller has been used with its high delicate control system in position control system. PID controller has simple structure and superior ability in several characteristics. When the response of system is changed by delay time, variable load , disturbances and external environment, control gain of PID controller must be readjusted on the system dynamic characteristics. Therefore, a control ability of PID controller is degraded when th control gain is inappropriately determined. When the response characteristic of system is changed under a condition, control gain of PID controller must be changed adaptively to be a waited response of system. In this paper an adaptive-tuning type PID controller is constructed by self-recurrent Neural Network(SRNN). applying back-propagation(BP) algorithm. Form the result of computer simulation in the proposed controller, its usefulness is verified.

  • PDF