• Title/Summary/Keyword: azacrown ion exchanger

Search Result 5, Processing Time 0.016 seconds

Enrichment of Lithium Isotope by Novel Ion Exchanger Containing Azacrown Ether as Anchor Group (앵커 그룹으로서 아자크라운 에테르를 포함한 새로운 이온교환체에 의한 리튬 동위원소의 농축)

  • Kim, Dong Won;Lee, Nam-Soo;Jeong, Young Kyu;Ryu, Haiil;Kim, Chang Suk;Kim, Bong Gyun
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.231-234
    • /
    • 1998
  • Separation factor for $^6Li$ and $^7Li$ has been determined using ion exchange resin having 1,7,13-trioxa-4,10,16-triazacyclooctadecane ($N_3O_3$) as an anchor group. The ion exchange capacity of the $N_3O_3$ ion exchanger was 2.0 meq/g dry resin. The lighter isotope, $^6Li$, is concentrated in the fluid phase, while the heavier isotope, $^7Li$, is enriched in the resin phase. By column chromatography [0.3 cm(I.D)${\times}$30 cm (height)] using 3.0 M ammonium chloride solution as an eluent, single separation factor, ${\alpha}$, 1.018, i.e. $(^7Li/^6Li)_{resin}/(^7Li/^6Li)_{fluid}$ was obtained by the Glueckauf theory from the elution curve and isotope ratios.

  • PDF

Binding Properties of Alkali Metal Ions with DBPDA Ion Exchanger (알칼리 금속이온들과 DBPDA 이온교환체와의 결합특성)

  • Kim, Dong Won;Kim Chang Suk;Choi Ki Young;Jeon Young Shin
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.5
    • /
    • pp.491-495
    • /
    • 1993
  • Synthesis of polymer-supported azacrown ether ion exchanger, {(4,5): (13,14)-dibenzo-6,9,12-trioxa-3,15,21-triazazabicyclo[15.3.1]heneicosa-1(21),17,19-triene-2,16-dione : DBPDA ion exchanger}, and its ion binding ability to alkali metal $(Li^+,\;Na^+,\;K^+)$ picrates were studied. The binding constants $(K_b)$ of DBPDA ion exchanger to the alkali metal picrates in ether type solvents were obtained by spectrophotometry. Binding constants of alkali metal ions were in the order to Li < Na < K, and alkali metal ions were formed 1 : 1 complexes with ligands of DBPDA ion exchanger. Also, $K_b$ was found to depend on the variables such as solvent and temperature. The binding constants for the complexes were obtained in the ranges of $2{\times}10^3{\sim}4{\times}10^4M^{-1}$. In order to obtain the enthalpy (${\Delta}$H) and entropy changes (${\Delta}$S)n the complexation process, Kb were plotted against the temperature in the ranges of 10∼40$^{\circ}C$ according to the van't Hoff theory. Enthalphy and entropy changes were found in the ranges of -2.71∼-3.79 kcal/mol, and -16.52∼-20.57 eu, respectively.

  • PDF

Enrichment of Lithium Isotope by an Ion Exchange Resin Containing Azacrown Ether (아자크라운 에터를 포함한 이온교환수지에 의한 리튬 동위원소의 농축)

  • Kim, Dong Won;Chung, Yongsoon;Choi, Ki Young;Lee, Yong-Ill;Jeong, Young Kyu;Jang, Young Hun
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.403-407
    • /
    • 1997
  • Separation factor for $^6Li$ and $^7Li$ have been determined using ion exchange resin having 1,7,13-trioxa-4,10,16-triazacyclooctadecane($N_3O_3$) as an anchor group. The lighter isotope, $^6Li$ is concentrated in the solution phase, while the heavior isotope, $^7Li$ is enriched in the resin phase. By Ccolumnl chromatography[0.9cm(I.D)${\times}$20cm(height)] using 2.0M ammonium chloride solution as an eluent, single separation factor, ${\alpha}$, 1.009. i.e.$(^7Li/^6Li)_{resin}$/$(^7Li/^6Li)_{solution}$ was obtained by the Glueckauf theory from the elution curve and isotope ratios.

  • PDF

Enrichment of Magnesium Isotopes by Monoazacrown Bonded Merrifield Peptide Resin.

  • Kim, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.6
    • /
    • pp.570-574
    • /
    • 2001
  • Magnesium isotope separation was investigated by chemical ion exchange with the 1-aza-12-crown-4 bonded Merrifield peptide resin using an elution chromatographic technique. The capacity of the novel azacrown ion exchanger was 1.0 meq/g dry resin. The heavier isotopes of magnesium were enriched in the resin phase, while the lighter isotopes were enriched in the solution phase. The single stage separation factor was determined according to the method of Glueckauf from the elution curve and isotopic assys. The separation factors of $^{24}Mg^{2+}$-$^{25}Mg^{2+}$, $^{24}Mg^{2+}$-$^{26}Mg^{2+}$, and $^{25}Mg^{2+}$-$^{26}Mg^{2+}$ were 1.008, 1.019, and 1.006, respectively.