• 제목/요약/키워드: axisymmetric shell element

검색결과 53건 처리시간 0.025초

내압을 받는 벨로즈의 변형 거동에 관한 연구 (A Study on the Deformation Behaviour of Bellows Subjected to Internal Pressure)

  • 왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.702-710
    • /
    • 1999
  • U-shaped bellows are usually used to piping system pressure sensor and controller for refriger-ator. Bellows subjected to internal pressure are designed for the purpose of absorbing deformation. Internal pressure on the convolution sidewall and end collar will be applied to an axial load tend-ing to push the collar away from the convolutions. To find out deformation behavior of bellow sub-jected to internal pressure the axisymmetric shell theory using the finite element method is adopted in this paper. U-shaped bellows can be idealized by series of conical frustum-shaped ele-ments because it is axisymmetric shell structure. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displace-ments are added to r-z cylindrical coordinates of nodal points. The new stiffness matrix of the sys-tem using the new coordinates of nodal points is adopted to calculate the another increments of nodal displacement that is the step by step method is used in this paper. The force required to deflect bellows axially is a function of the dimensions of the bellows and the materials from which they are made. Spring constant is analyzed according to the changing geometric factors of U-shaped bellows. The FEM results were agreed with experiment. Using developed FORTRAN PROGRAM the internal pressure vs. deflection characteristics of a particu-lar bellows can be predicted by input of a few factors.

  • PDF

유한요소법을 이용한 축대칭 다단계 딥드로잉 금형 설계 해석 (Axisymmetric Multi-Stage Deep Drawing Dies Design Analysis Using Finite Element Method)

  • 이동호;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 제2회 박판성형심포지엄 논문집 박판성형기술의 현재와 미래
    • /
    • pp.65-73
    • /
    • 1998
  • The design analysis of axisymmetric, multi-stage deep drawing dies was performed using the rigid-viscoplastic finite element formulation. In the formulation, the axisymmetric CFS algorithm was employed. Hill's non-quadratic normal anisotropic yield criterion and isotropic hardening rule were considered. For trial initial displacements and tool contact points, the geometric force equilibrium method was adopted. In order to see the validity of the formulation, the multi-stage deep drawing processes of shell-cylinder front part of hydraulic booster were simulated. The simulation showed good agreements with measurements and PAM-STAMP.

Free Vibration Analysis of Axisymmetric Conical Shell

  • Choi, Myung-Soo;Yeo, Dong-Jun;Kondou, Takahiro
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.5-16
    • /
    • 2016
  • Generally, methods using transfer techniques, like the transfer matrix method and the transfer stiffness coefficient method, find natural frequencies using the sign change of frequency determinants in searching frequency region. However, these methods may omit some natural frequencies when the initial frequency interval is large. The Sylvester-transfer stiffness coefficient method ("S-TSCM") can always obtain all natural frequencies in the searching frequency region even though the initial frequency interval is large. Because the S-TSCM obtain natural frequencies using the number of natural frequencies existing under a searching frequency. In this paper, the algorithm for the free vibration analysis of axisymmetric conical shells was formulated with S-TSCM. The effectiveness of S-TSCM was verified by comparing numerical results of S-TSCM with those of other methods when analyzing free vibration in two computational models: a truncated conical shell and a complete (not truncated) conical shell.

비축대칭 하중을 받는 원통형 쉘의 단순화 해석 (A Simple Analysis of the Cylindrical Shell Subjected to a Nonaxisymmetric Load)

  • 남문희;이관희
    • 한국전산구조공학회논문집
    • /
    • 제13권2호
    • /
    • pp.179-187
    • /
    • 2000
  • 비축대칭 하중을 받는 축대칭 쉘의 해석시 구조의 축대칭성을 고려하면 시간과 노력을 절약할 수 있다. 하중과 변위에 대하여 원주방향으로 Fourier 급수전개를 고려함으로서 비축대칭하중을 받는 축대칭 쉘의 해석은 뼈대요소처럼 취급할 수 있다. 본 논문에서는 Fourier 급수전개를 이용한 통상의 유한요소법에 의하여 비축대칭 하중을 받는 원형탱크의 강성행렬을 유도하고, 이 강성행렬을 행렬의 조작에 의해 전달행렬로 전환하여 전달행렬법을 적용하였다. 이 논문은 비축대칭하중을 받는 축대칭 쉘의 해석을 위한 연립방정식의 수를 최소화하는데 그 목적이 있다. 제안된 방법에 의한 풍하중과 물하중을 받는 원형탱크의 해석결과는 타 방법에 의한 해석결과와 잘 일치하고 있다.

  • PDF

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • 제15권2호
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

줄-톰슨 마이크로 냉각기용 소형 금속 벨로우즈의 구조적 특성에 관한 연구 (A Study on the Structural Characteristics of Miniature Metal Bellows in Joule-Thomson Micro-Cryocooler)

  • 이승하;이태원
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.95-102
    • /
    • 2008
  • A miniature metal bellows is used to minimize the excessive flow of the cryogenic gas in Joule-Thomson micro cryocooler. It is made of metal alloy and its geometry is axisymmetric. The bellows is filled with high pressure gas. It contracts or expands in the axial direction for a wide change of temperature, because the pressure and volume inside the bellows must be satisfied with state equation of the gas. Therefore, in order to design the bellows in Joule-Thomson micro-cryocooler, it is important to evaluate deformation of the bellows under internal pressure exactly. Considering geometric nonlinearity, deformations analysis of the bellows were obtained by a commercial finite element code ANSYS, The bellows was modeled by 3-node axisymmetric shell elements with reduced integration. Experiments were also performed to prove the validity of proposed numerical analysis. The results by numerical analysis and experiments were shown in good agreements.

유한요소법을 이용한 축대칭 다단계 딥드로잉 금형 설계 해석 (Axisymmetric Multi-Stage Deep Drawing Die Design Analysis Using Finite Element Method)

  • 이동호;이승열;금영탁
    • 소성∙가공
    • /
    • 제7권6호
    • /
    • pp.594-602
    • /
    • 1998
  • The design analysis of axisymmetric, multi-stage deep drawing dies was performed using the rigid-viscoplastic finite element formulation. In the formulation the axisymmetric CFS algorithm was employed. Hill's non-quadratic normal anisotropic yield criterion and isotropic hardening rule were considered. For trial initial displacements and tool contact points. the geometric force equilibrium method was adopted. In order to see the validity of the formulation, the multi-stage deep drawing processes of shell-cylinder front part of hydraulic booster were simulated. The simulation showed good agreements with measurments and PAM-STAMP results.

  • PDF

Buckling of aboveground oil storage tanks under internal pressure

  • Yoshida, Shoichi
    • Steel and Composite Structures
    • /
    • 제1권1호
    • /
    • pp.131-144
    • /
    • 2001
  • Overpressurization can occur due to the ignition of flammable vapors existing inside aboveground oil storage tanks. Such accidents could happen more frequently than other types of accident. In the tank design, when the internal pressure increases, the sidewall-to-roof joint is expected to fail before failure occurs in the sidewall-to-bottom joint. This design concept is the socalled "frangible roof joint" introduced in API Standard 650. The major failure mode is bifurcation buckling in this case. This paper presents the bifurcation buckling pressures in both joints under internal pressure. Elastic and elastic-plastic axisymmetric shell finite element analysis was performed involving large deformation in the prebuckling state. Results show that API Standard 650 does not evaluate the frangible roof joint design conservatively in small diameter tanks.

클래드 강판재에 의한 축대칭 디프드로잉의 탄소성 유한요소해석 (An Elasto-Plastic Finite Element Analysis on Deep Drawing of Clad Sheet Metal)

  • 류호연;김영은;김종호;정완진
    • 소성∙가공
    • /
    • 제10권5호
    • /
    • pp.411-417
    • /
    • 2001
  • A Comparative study on deep drawing of clad sheet is carried out to investigate the forming characteristics and the effectiveness of modified finite element analysis. An elasto-plastic finite element analysis Is developed to analyze the forming of clad sheet using explicit scheme and layered shell. Axisymmetric deep drawing of stainless clad metal sheet is performed and thickness distribution is obtained. The corresponding finite element analysis shows good agreement with the results. Some disagreement can be explained by the assumption of shell element and the complexity of deformation of clad sheet.

  • PDF

Vibrations and thermal stability of functionally graded spherical caps

  • Prakash, T.;Singh, M.K.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • 제24권4호
    • /
    • pp.447-461
    • /
    • 2006
  • Here, the axisymmetric free flexural vibrations and thermal stability behaviors of functionally graded spherical caps are investigated employing a three-noded axisymmetric curved shell element based on field consistency approach. The formulation is based on first-order shear deformation theory and it includes the in-plane and rotary inertia effects. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. The effective material properties are evaluated using homogenization method. A detailed numerical study is carried out to bring out the effects of shell geometries, power law index of functionally graded material and base radius-to-thickness on the vibrations and buckling characteristics of spherical shells.