• Title/Summary/Keyword: axis alignment

Search Result 233, Processing Time 0.022 seconds

The Thrust Axis Alignment of Kick Motor for Ground Firing Test (지상 연소 시험을 위한 킥 모터의 추력 축 정렬)

  • Jung, Dong-Ho;Kim, Ji-Hoon;Lee, Han-Ju;Oh, Seung-Hyub
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.389-392
    • /
    • 2008
  • The thrust axis alignment of the launch vehicle is very important because of the misalignment causes the unstable attitude control and results in mission failure. Generally, optical methods such as digital theodolite and laser tracker and mechanical method such as turn table method are used to thrust axis alignment. This article deals with the simple method of thrust axis alignment of Kick Motor.

  • PDF

Method for tool alignment error Compensation of Angle controlled Ultra-Precision machining (각도 제어 초정밀 가공기의 공구 위치 검출)

  • Park, Soon-Sub;Lee, Ki-Young;Kim, Hyoung-Mo;Lee, Jae-Seol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.53-57
    • /
    • 2007
  • This paper presents a geometrical error compensation of tool alignment for B axis controlled machine. In precision machining, tool alignment is crucial parameter for machined surface. To decrease tool alignment error, plus tilted tool from B axis center is touched to reference work piece and checked the deviation from original position. Same process is performed in minus tilt. Comparing these 2 touch positions, wheel alignment error in X axis and Z axis can be calculated on B axis center. Experimental results show that this compensation method is efficient to correct tool alignment.

  • PDF

Alignment Measuring Apparatus for B-axis of Separated Multi-axis Machine (분리된 다축 장비의 B축 얼라인먼트 측정 장치에 관한 연구)

  • Cheon, Kyeong-Ho;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.47-54
    • /
    • 2018
  • These days, the aerospace industry uses larger machining parts and assembly parts than those in the past. The assembly machines also show the same trend. This study is concerned with the alignment measuring apparatus for the B-axis of a separated multi-axis machine. The alignment measuring apparatus is widely installed for assembly machines in the aircraft assembly process. The alignment measuring apparatus consists of a swivel part and a measuring part. This is a new conceptual idea under patent. All elements of the alignment measuring apparatus are analyzed with the FEM. The analyzed result shows that the alignment measuring apparatus is high in accuracy with stability and steady deformation.

Sharp Edge Tool Alignment for Micro Pattern Machining (마이크로 패터닝 가공을 위한 공구 정렬에 관한 연구)

  • Park, Soon-Sub;Won, Jong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • This paper presents a geometrical error compensation of tool alignment for sharp edge bite on B axis controlled machine. In precision micro patterning, bite alignment is crucial parameter for machined surface. To decrease bite alignment error, plus tilted bite from B axis center is touched to reference work piece(pin gauge) and checked the deviation from original position. Same process is repeated for maximum touch deviation value. From this touched position value, wheel alignment error in X axis and Z axis can be calculated on B axis center. Experimental results show that this compensation method is efficient to correct sharp edge bite alignment.

  • PDF

Antenna Alignment Method for Low Angular Error of 3-axis Tracking System

  • Lee, Jeom Hun;Kim, Young Wan;Kim, Nae Soo;Lee, Ho Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.44-54
    • /
    • 2001
  • This paper describes the antenna alignment method of the tracking antenna system for LEO satellite. The purpose of the antenna alignment is to reduce the angular error due to the structural alignment and the monopulse null point alignment error. The angular error of 3 axis tracking system is the key performance parameter that should be minimized to accurately track satellite movement. The angular error is analyzed via a simulation and boresight measurement. The simulation is done with formulas to be derived from vector concept for 3-axis movement. The formulas of the structural alignment are verified by comparing the formula result with the field measurement. Also, the angular error due to monopulse null shift is obtained via boresight measurement. Based on the analyzed and measured results, the antenna alignment was performed and was verified via tracking test of operating LEO satellite.

  • PDF

KSLV-I Kick Motor System Thrust Axis Alignment (KSLV-I 킥모터 시스템 추력 축 정렬)

  • Lee, Han-Ju;Jung, Dong-Ho;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.138-142
    • /
    • 2010
  • The thrust axis alignment of the launch vehicle is very important because of the misalignment causes the unstable attitude control and results in mission failure. Generally, optical methods such as digital theodolite and laser tracker and mechanical method such as turn table method are used to align thrust axis to vehicle axis. This article deals with the simple method of thrust axis alignment of Kick Motor.

A Study on the Optical Device Alignment Characteristics Improvement using Multi-Axis Ultra Precision Stage (극초정밀 다축 스테이지를 이용한 광소자 정렬 특성 향상에 관한 연구)

  • Jeong, Sang-Hwa;Cha, Kyoung-Rae;Kim, Gwang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.175-183
    • /
    • 2005
  • In recent years, as the demands of VBNS and VDSL increase, the development of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM elements increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this Paper, the optical alignment characteristic of multi-axis ultra precision stage is studied. The alignment algorithms are studied for applying to the ultra precision multi-axis stage. The alignment algorithm is comprised of field search and peak search algorithms. The contour of optical power signals can be obtained by field search and the precise coordinate can be found out by peak search. Three kinds of alignments, such as 1 ch. input vs. 1 ch. output optical stack, 1 ch. input vs. 8 ch. output PLC stacks, and ferrule vs. ferrule, are performed for investigating the alignment characteristics.

Measurement methodology for the alignment accuracy of wafer stepper (웨이퍼 스텝퍼의 정렬정확도 측정에 관한 연구)

  • Lee, Jong-Hyun;Jang, Won-Ick;Lee, Yong-Il;Kim, Doh-Hoon;Choi, Boo-Yeon;Nam, Byung-Ho;Kim, Sang-Cheol;Kim, Jin-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.150-156
    • /
    • 1994
  • To meet the process requirement of semiconductor device manufacturing, it is necessary to improve the alignment accuracy in exposure equipments. We developed the excimer laser stepper and will describe the methodology for alignment measurement and experimental results. Our wafer alignment system consists of off-axis optics, TTL(Through The Lens) optics and high precision stage. Off-axis alignment utilizes the image processing and /or diffraction from thealign marks of off-centered chip area. On the other hand, TTL alignment can be used for the die-by-die alignment using dual beam interferometry. When only off-axis alignment was used, the experimental alignment error(lml+3 .sigma. ) was 0.26-0.29 .mu. m, and will be reduced down to 0.15 .mu. m by adding TTL alignment.

  • PDF

Method of Beam Alignment with the Rotation Axis for Laser Fabrication of Micro Cylindrical Structures (레이저를 이용한 미세 원통 구조물 제조를 위한 빔과 회전축 정렬 방법)

  • 정성진;정성호;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1056-1060
    • /
    • 1997
  • An optical technique to align the laser beam with the rotation axis of a cylindrical microstructure is developed for laser microfabrication. The sample surface is first set normal to the rotation axis by applying a simple reflection law of geometrical optics and then the laser beam is aligned with the rotation axis using translation stages with quadrant photodiodes. Principle and the configuration of the alignment technique are described. An application of the present technique to laser microstereolithography showed that it could be effectively used for fabrication of micro cylindrical structures.

  • PDF

A 3-axis Focus Mechanism of Small Satellite Camera Using Friction-Inertia Piezoelectric Actuators

  • Hong, Dae Gi;Hwang, Jai Hyuk
    • International Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.8-15
    • /
    • 2018
  • For small earth observation satellites, alignment between the optical components is important for precise observation. However, satellite cameras are structurally subject to misalignment in the launch environment where vibration excitations and impacts apply, and in space environments where zero gravity, vacuum, radiant heat and degassing occur. All of these variables can cause misalignment among the optical components. The misalignment among optical components results in degradation of image quality, and a re-alignment process is needed to compensate for the misalignment. This process of re-alignment between optical components is referred to as a refocusing process. In this paper, we proposed a 3 - axis focusing mechanism to perform the refocusing process. This mechanism is attached to the back of the secondary mirror and consists of three piezoelectric inertia-friction actuators to compensate the x-axis, y-axis tilt, and de-space through three-axis motion. The fabricated focus mechanism demonstrated excellent servo performance by experimenting with PD servo control.