• Title/Summary/Keyword: axial stiffness

Search Result 753, Processing Time 0.024 seconds

Coupled Axial and Torsional Vibration Analysis in Large Diesel Engines and Generators for Stationary Power Plants (내연 발전용 대형 디젤 엔진-발전기 축계의 종-비틈 연성진동 해석)

  • Park, Heui-Joo;Park, Jong-Po
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1040-1045
    • /
    • 2000
  • This paper presents results of coupled axial and torsional vibration analysis of shafting system in large diesel engines and generators for stationary power plants. Axial vibration of the shafting system takes place due to mainly torsional deformation or vibration and breathing effect of crank throws, caused by cylinder gas forces and reciprocating inertia of the engine. Cross-coupled stiffness matrix of the crank throws is calculated employing a finite element model of the crank throw and a static condensation method. Forced response analysis of the shafting system is performed using the calculated stiffness matrix and derived governing equations.

  • PDF

Vibration Analysis of Expansion Joint with Rotary Inertia Using Transfer Matrix Method (전달행렬법을 이용하여 회전관성을 고려한 Expansion Joint의 진동해석)

  • Shin, Dong-Ho;Oh, Jae-Eung;Lee, Jung-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.544-549
    • /
    • 2011
  • Simplified formulae for axial and bending natural frequencies of bellows are developed using an equivalent thin-walled pipe model. The axial and bending stiffness of bellows is determined using lumped transfer matrix method. Accordingly, the Expansion Joint Manufacturers Association (EJMA) formula for axial and bending stiffness calculation is modified using two different equivalent radii. The results from the simplified formulae are verified by those from a experiment result and a finite element (FE) model and good agreement is shown between the each other.

  • PDF

Axial Permanent Magnetic Bearing Design For a Low-Loss Energy Storage Device Mounted on Hybrid Bearing System (하이브리드 베어링 지지 저손실 에너지 저장 시스템의 축방향 영구자석 베어링 설계기술 연구)

  • 경진호;김유일;최상규;김영철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.272-277
    • /
    • 1997
  • The axial bearing using two ring type permanent magnets to support the weight of a flywheel is proposed to reduce the bearing loss in a flywheel energy storage , system. Two permanent magnet makes stable force in axial direction but unstable force in lateral direction. The lateral unstable stiffness is identified quantitatively using flux analysis, and then through the rotor dynamic analysis on a rigid flywheel system the unstable effects on the system by the stiffness is investigated.

  • PDF

A Study on transverse Behavior of Lifeline System Due to Liquefaction-induced Permanent Ground Displacement (액상화 영구지반변형에 의한 라이프라인 구조물의 횡방향 거동에 관한 연구)

  • 김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.369-376
    • /
    • 1998
  • The purpose of the present study is to analyze the response of pipelines subjected to liquefaction-induced permanent ground displacement and to discuss the failure prediction of domestic waterway pipelines. Initially here, characteristics of liquefaction are reviewed and then permanent ground displacement is investigated base on previous earthquake hazard cases. Next, considering the distribution of the transverse permanent ground displacement and equivalent spring constant effect, formulas obtained by a beam theory are established to analyze continuous pipelines. This analysis was performed without consideration of axial effects. So the finite element analysis was used in order to consider the axial stiffness of soil. As a result, degree of liquefaction, width of deformed ground and axial stiffness are crucial points for evaluation the failure of pipelines subjected to permanent ground displacement.

  • PDF

Study on the Tilting pad Mechanism of Swash Plate Type Axial Piston Motor (사판식 액셜 피스톤 모터의 틸팅 패드의 매카니즘에 대한 연구)

  • Kim, Jin-Ook;Lee, Chun-Tae;Kim, Jong-Kyum;Hur, Nam-Su;Lee, Jin-Keol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.78-88
    • /
    • 1991
  • The existing axial piston pump/motors of swash plate type rapidly drop efficiency in high speed region in comparison with low speed. This is the reason why the pump/motors were designed only in a view point of power supply. But, in this paper, the motor which was optimally designed on power supply load capacitancy, flow loss volume, axial stiffness and tiliting stiffness keeps up high efficiency in high speed region and in high pressure resion too.

  • PDF

Development of Piston Friction Force Measurement System (피스톤계 마찰 측정 장치 개발)

  • Ha, Gyeong-Pyo;Kim, Jung-Su;Jo, Myeong-Rae;O, Dae-Yun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1608-1614
    • /
    • 2002
  • This Paper presents a novel piston friction force measurement system that has characteristics of relieving the Pressure force acting on the upper surface of the liner; the system uses general rubber O-rings for combustion chamber sealing, and does not need special changes to the piston top land. The lower supporter of the floating liner increases stiffness in liner axial direction, and results in the increase of natural frequency. The upper supporter has multi-layer structure designed fer low axial stiffness and high radial stiffness. With the use of the present system, the effects of variation in clearance and piston ring tension were studied.

Prediction of Form Accuracy during Traverse Grinding of Slender Workpiece Using the Cylindrical Prunge Grinding Data (원통연삭 실험자료를 이용한 트래버스 연삭공정중의 형상예측)

  • 박철우;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.174-183
    • /
    • 2000
  • Non-Parallelism the axial direction occurs during grinding process of long slender shafts. The reason for the axial error is due to elastic deformation of the components, accumulation phenomenon of the grinding and wheel wear during the grinding process. The accumulation phenomenon, the size generation mechanism and the wheel wear process during traverse grinding result in complicated process at each step on the wheel surface. The grinding system stiffness obtained from the stiffness of the center on the tailstock and the workpiece varing according to the relative position of the wheel and the workpiece. Further more, the value of wheel wear increases as the grinding process advances. The above mentioned issues make the shape generation process during traverse grinding quite complicated. This research analyzes the shape generation process in the direction of the work spindle. First, the formulation of the grinding system stiffness was conducted and the simulation analysis method of the traverse grinding was established. Also, a measuring system for assessing the dimensinal accuracy of the workpiece has been developed.

  • PDF

FEM Analysis of alternatively laminated structure constructed of rubber and reinforced aluminium layers (고무 알루미늄 적층 구조물의 유한요소 해석)

  • Park, Sung-Han;Lee, Bang-Up;Hong, Myung-Pyo;Ryu, Back-Reung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.402-406
    • /
    • 2000
  • Strain energy function of the isoprene rubber was accurately determined by the experiments of uniaxial tension, planar tension, biaxial tension and volumetric compression. Deformation behavior of alternatively laminated structure of elastomer and reinforced aluminium layers, was analysed by Finite Element method. As a result, Ogden strain energy function obtained from the experiments describes the hyperelastic characteristics of the rubber very well. The compressibility of the rubber reduces axial stiffness of the structure. The axial stiffness of alternatively laminated structure being larger than shear stiffness. Which enables the structure to be shear-deformed easily.

  • PDF

comparative Study on confinement Steel Amount of RC Column Bent (철근콘크리트 교각 심부구속철근량의 비교연구)

  • 이재훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.239-246
    • /
    • 1999
  • recently there have been many destructive seismic events in Kobe Japan in 1995 and in Northridge California USA in 1994. etc. The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. Comparing the earthquake magnitude in Korea with those in the west coast of the USA it may be said that the current seismic design requirements of the Korean Bridge Design Standard Specifications provides too conservation design results especially for transverse reinforcement details and amount in reinforced concrete columns. This fact usually makes construction problems in concrete casting due to transverse reinforcement congestion. And the effective stiffness Ieff depends on the axial load P(Ag{{{{ {f }_{ck } }}) and the longitudinal reinforcement ratio Ast/Ag and it is conservative to use the effective stiffness Ieff than the gross section moment Ig. Seismic design for transverse reinforcement content of concrete column is considered of extreme-fiber compression strain R-factor axial load and stiffness etc.

  • PDF

Study on axial compressive behavior of quadruple C-channel built-up cold-formed steel columns

  • Nie, Shaofeng;Zhou, Tianhua;Liao, Fangfang;Yang, Donghua
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.499-511
    • /
    • 2019
  • In this study, the axial compressive behavior of novel quadruple C-channel built-up cold-formed steel columns with different slenderness ratio was investigated, using the experimental and numerical analysis. The axial compressive capacity and failure modes of the columns were obtained and analyzed. The finite element models considering the geometry, material and contact nonlinearity were developed to simulate and analyze the structural behavior of the columns further. There was a great correlation between the numerical analyses and test results, which indicated that the finite element model was reasonable and accurate. Then influence of, slenderness ratio, flange width-to-thickness ratio and screw spacing on the mechanical behavior of the columns were studied, respectively. The tests and numerical results show that due to small slenderness ratio, the failure modes of the specimens are generally local buckling and distortional buckling. The axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns decrease with the increase of maximum slenderness ratio. When the screw spacing is ranging from 150mm to 450mm, the axial compressive strength and stiffness of the quadruple C-channel built-up cold-formed steel columns change little. The axial compressive capacity of quadruple C-channel built-up cold-formed steel columns increases with the decrease of flange width-thickness ratio. A modified effective length factor is proposed to quantify the axial compressive capacity of the quadruple C-channel built-up cold-formed steel columns with U-shaped track in the ends.