• Title/Summary/Keyword: axial load level

Search Result 153, Processing Time 0.028 seconds

An Application of Strength Reduction Factors to Reinforced Concrete Columns considering Ductility (연성을 고려한 철근콘크리트 기둥의 강도감소계수 적용에 관한 연구)

  • 손혁수;이재훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.147-156
    • /
    • 1999
  • Current design code states that the strength reduction factor shall be permitted to be increased linearly from that for axial compression to that for flexure as the design axial load strength $\Phi$cPn decrease from 0.1fckAg to zero. Since this empirically adopted axial load level of $\Phi$cPn=0.1fckAg considers only sectional area and concrete strength, the other variables such as steel ratio, steel yielding strength, and steel arrangement can not be considered. This research is performed to investigate the consistency and the rationality of the code requirement for determination of column design strength. A nonlinear axial force-moment-curvature analysis was conducted in order to investigate the ductility of reinforced concrete column sections. As the result of ductility analysis, it was found that the ductility at the axial force of $\Phi$cPn=0.1fckAg represented a lock of consistency for the various variable contained sections. Therefore, a more reasonable application method of strength reduction factor is proposed, that is based on the strain ductility index.

Improvement of Seismic Performance Evaluation Method for Concrete Dam Piers by Applying Collapse-Level Earthquake(CLE) (붕괴방지수준(CLE)을 적용한 콘크리트 댐 피어부 내진성능평가 방안 개선)

  • Jeong-Keun Oh;Yeong-Seok Jeong;Min-Ho Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • The purpose of this paper is to suggest a method for applying a reasonable dam axial seismic load loading method and load-bearing capacity evaluation method in the dynamic analysis of the pier part of a concrete dam to which the seismic force of the collapse prevention level is applied. To this end, the pier part of a concrete dam was selected as a target facility, and the characteristics of the dynamic behavior in the axial direction of the weir dam were analyzed through dynamic analysis applying various weir widths, and 'U.S. The load-bearing capacity evaluation was performed by applying the RC hydraulic structure evaluation technique suggested by the Army Corps, 2007'. As a result of the study, when applying seismic force in the axial direction of the pier part, it is more realistic to assume that the axial direction of the weir part dam behaves as a rigid body and 'U.S. Army Corps, 2007' suggested that the method of reviewing the load-bearing capacity for moment and shear was considered reasonable, so it was concluded that improvement of the current evaluation method was necessary. If the improvement of the research result is applied, it will have the effect of deriving more reasonable evaluation results than the current seismic performance evaluation method using CLE. It is judged that additional research is needed in the future on the torsional moment occurring in the pier part.

Experimental behaviours of steel tube confined concrete (STCC) columns

  • Han, Lin-Hai;Yao, Guo-Huang;Chen, Zhi-Bo;Yu, Qing
    • Steel and Composite Structures
    • /
    • v.5 no.6
    • /
    • pp.459-484
    • /
    • 2005
  • In recent years, the use of steel tube confined concrete (STCC) columns has been the interests of many structural engineers. The present study is an attempt to study the monotonic and cyclic behaviours of STCC columns. For the monotonic behaviours, a series of tests on STCC stub columns (twenty one), and beam-columns (twenty) were carried out. The main parameters varied in the tests are: (1) column section types, circular and square; (2) tube diameter (or width) to thickness ratio, from 40 to 162, and (3) load eccentricity ratio (e/r), from 0 to 0.5. For the cyclic behaviours, the test parameters included the sectional types and the axial load level (n). Twelve STCC column specimens, including 6 specimens with circular sections and 6 specimens with square sections were tested under constant axial load and cyclically increasing flexural loading. Comparisons are made with predicted column strengths and flexural stiffness using the existing codes. It was found that STCC columns exhibit very high levels of energy dissipation and ductility, particularly when subjected to high axial loads. Generally, the energy dissipation ability of the columns with circular sections was much higher than those of the specimens with square sections. Comparisons are made with predicted column strengths and flexural stiffness using the existing codes such as AIJ-1997, AISCLRFD- 1994, BS5400-1979 and EC4-1994.

A Computational Study on the Unsteady Lateral Loads in a Rocket Nozzle

  • Nagdewe, Suryakant;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.289-292
    • /
    • 2008
  • Highly over-expanded nozzle of the rocket engines will be excited by non-axial forces due to flow separation at sea level operations. Since rocket engines are designed to produce axial thrust to power the vehicle, non-axial static and/or dynamic forces are not desirable. Several engine failures were attributed to the side loads. Present work investigate the unsteady flow in an over-expanded rocket nozzle in order to estimate side load during a shutdown/starting. Numerical computations has been carried out with density based solver on multi-block structured grid. Present solver is explicit in time and unsteady time step is calculated using dual time step approach. AUSMDV is considered as a numerical scheme for the flux calculations. One equation Spalart-Allmaras turbulence model is selected. Results presented here is for two nozzle pressure ratio i.e. 100 and 20. At 100 NPR, restricted shock separation (RSS) pattern is observed while, 20 NPR shows free shock separation (FSS) pattern. Side load is observed during the transition of separation pattern at different NPR.

  • PDF

Hysteric Behavior of Ultra-High Strength RC Columns (초고강도 RC 기둥의 이력특성에 관한 실험적 연구)

  • Kim Jong Keun;Ahn Jong Mun;Han Beom Seok;Shin Sung Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.31-34
    • /
    • 2005
  • An experimental investigation was conducted to examine the hysteric behavior of Ultra-High strength concrete columns for the requirement of ACI provision. Seven 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the cross section $300\times300mm$ and the shear span ratio 4. The main variables are axial load ratio, configuration and volumetric ratio of transverse reinforcement. It has been found that the behavior of columns was affected by axial load ratio rather than the amount and the configuration of transverse reinforcement. Consequently, to secure the ductile behavior of 100MPa Ultra-High strength concrete columns, ACI provision for the requirement of transverse steel may considered axial level and the detail of transverse reinforcement.

  • PDF

An Experimental Study on the Inelastic Behavior of the Reinforced Concrete Column Subject to Cyclic Lateral Loads (반복수평하중을 받는 철근콘크리트 기둥의 비탄성 거동에 관한 실험적 연구)

  • 정세환;정하선;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.10a
    • /
    • pp.45-50
    • /
    • 1991
  • This research has been carried out experimently to verify the structural efficiency of the reinforced concrete columns subjected to cyclic lateral loadings in the inelastic range. Sixteen specimens have been used in the tests, the factors such as reinforcing bars, shear-span ratio, axial load level and loading history being taken differently. The load-carrying capacities and the stiffness degradation in the inelastic range by cycle lateral load application have been counted by observing the load-deformation relationship, the crack initiation and propagation and the energy dissipation phenomena.

  • PDF

Prediction of Inelastic Force-Displacement Relationships of Reinforced Concrete Shear Wall Systems Based on Prescribed Ductilities (강성저하 실험식 및 연성계수를 이용한 철근콘크리트 전단벽 구조시스템의 비탄성 하중-변위 관계식 예측)

  • 홍원기
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.159-171
    • /
    • 1995
  • The parameters describing a complete hysteresis loop include pinch force, drift offset, effective stiffness, unloading and reloading trangential stiffness. Analytical equations proposed to quantify the nonlinear, inelastic behavior of reinforced shear walls can be used to predict these parameters as a function of axial load and drift ratio. For example, drift offset, effective stiffness, and first and second unloading and reloading tangential stiffness are calculated using equations obtained from test data for a desired drift ratio or ductility level. Pinch force can also be estimated for a given drift ratio and axial load. The effective virgin stiffness at the first yield and its post yield reduction can be estimated. The load deflection response of flexural reinforced concrete shear walls can now be estimated based on the effective wall stiffness that is a function of axial force and drift ratio.

  • PDF

Study(IV) on the Development of Charts and Formulae Predicting Allowable Axial Bearing Capacity for Prebored PHC Pile Socketed into Weathered Rock through Sandy Soil Layer - Field Verification of Long-term Allowable Compressive Load of PHC Piles by Analyzing Pile Load Test Results - (사질토층을 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(IV) - 압축정재하시험 및 양방향재하시험 자료 분석을 통한 매입 PHC말뚝의 장기허용압축하중의 실증 성능 검증 -)

  • Lee, Wonje;Kim, Chae Min;Yun, Do Kyun;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.29-36
    • /
    • 2019
  • Axial compressive failure loads ($P_n$) of diameter 500 mm and diameter 600 mm A type PHC pile were calculated as 7.7 MN and 10.6 MN, respectively. In the static pile load tests, the maximum axial compressive loads of the above 2 kinds of A type pile were measured as 6.9 MN and 8.8 MN respectively, therefore these measured maximum loads were at the level of 90% and 83% of $P_n$ respectively. Long-term allowable axial compressive loads ($P_a$) of the above 2 kinds of A type pile were 1.7 MN and 2.3 MN respectively. From the bi-directional pile load test data on the prebored PHC piles, it was confirmed that the allowable axial compressive bearing resistance was estimated as 131% of the long-term allowable compressive load of the PHC pile and showed higher than the allowable bearing capacity calculated by the current design method. Therefore, it has been verified that the PHC pile can be used up to the maximum long-term allowable compressive load, and it is suggested that the ultimate pile capacity formula used in the current design for prebored PHC piles should be improved to accommodate the actual capacity.

Comparisons of Seismic Behaviors of Columns in Concrete Moment Frames (기존 기둥 실험결과 비교를 통한 기둥성능 평가)

  • 박성일;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.571-576
    • /
    • 2001
  • The objective of this study is to assess seismic damage potential and evaluate structural performance of columns in concrete moment frames. For this purpose the results of 3 former studies are compared. Experimental variables considered in these studies are lap-splice of longitudinal reinforcement, axial load level, longitudinal reinforcement ratio, etc. The columns in 1st story of the building are considered in these studies since the columns in 1st story shall resist largest axial force during an earthquake. Based on test results strength, ductility capacities as well as plastic hinge length are compared and discussed.

  • PDF

Safety Evaluation on Interaction between Track and Bridge in Continuous Welded Railway Bridge Considering Seismic Load (지진하중을 고려한 장대레일교량의 궤도-교량 상호작용에 대한 안전성 평가)

  • Shim, Yoon-Bo;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.40-48
    • /
    • 2016
  • To observe the rail-slab interaction in continuous welded railway(CWR) bridge when earthquake occurs, additional axial rail stresses and relative longitudinal displacements between rail and bridge deck were calculated with input of various load combinations and 3 different types of seismic loads to an analytical model. As results of analysis, it can be found that standard response spectrum proposed by Korea Rail(KR) network authority for earthquake design showed less additional axial rail stresses than allowable levels, but greater relative longitudinal displacement between rail and bridge deck, which means that adjustment of relative longitudinal displacement within a standard level is much more difficult than axial train stress. Additionally, if a large-scaled earthquake as occurred at Kobe, Japan comes up, then both of additional axial rail stress and relative displacement in rail-bridge deck may exceed allowable levels, which indicates to make proper design guides against sudden earthquake occurrence.