• Title/Summary/Keyword: axial load

Search Result 1,952, Processing Time 0.029 seconds

Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls (저층형 철근콘크리트 전단벽의 전단강도 평가를 위한 스트럿-타이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • The previous strut-and-tie models (STMs) to evaluate the shear strength of squat shear walls with aspect ratio less than 2.0 do not consider the axial load transfer of concrete strut and individual shear transfer contribution of horizontal and vertical shear reinforcing bars in the web. To overcome the limitation of the existing models, a simple STM was established based on the crack band theory of concrete fracture mechanics. The equivalent effective width of concrete strut having a stress relief strip was determined from the neutral axis depth and effective factor of concrete strength. The shear transfer mechanism of shear reinforcement at the extended crack band zone was calculated from an internally statically indeterminate truss system. The shear transfer capacity of concrete strut and shear reinforcement was then driven using the energy equilibrium in the stress relief strip and crack band zone. The shear strength predictions of squat shear walls evaluated from the current models are in better agreement with 150 test results than those determined from STMs proposed by Siao and Hwang et al. Furthermore, the proposed STM gives consistent agreement with the observed trend of the shear strength of shear walls against different parameters.

Nonlinear Three-dimensional Analysis of Piled Piers Considering Coupled Cap Rigidities (교량 말뚝기초의 캡강성을 고려한 비선형 3차원 해석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.19-30
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method was developed by considering complex behavior of sub-structures (pile-soil-cap) which included soil nonlinearity and the behavior of super-structure (pier). As an intermediate analysis method between FBPier 3.0 and Group 0.0, it took advantages of each method. Among the components of a pile group, individual piles were modeled with stiffness matrices of pile heads and soils with nonlinear load-transfer curves (t-z, q-z and p-y curves). A pile cap was modeled with modified four-node flat shell elements and a pier with three-dimensional beam element, so that a unified analysis could be possible. A nonlinear analysis method was proposed in this study with a mixed incremental and iteration techniques. The proposed method for a pile group subjected to axial and lateral loads was compared with othe. analytical methods (i.e., Group 6.0 and FBPier 3.0). It was found that the proposed method could predict the complex behavior of a pile group well, even though piles were modelled simply in this study by using pile head stiffness matrices which were different from the method introduced in FBPier 3.0.

Development of Designed Formulae for Predicting Ultimate Strength of the Perforated Stiffened Plate subjected to Axial Compressive Loading (압축하중을 받는 유공보강판 구조의 최종강도 설계식 개발)

  • Park, Joo-Shin;Ko, Jae-Yong;Lee, Kyung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.5 s.121
    • /
    • pp.435-445
    • /
    • 2007
  • Ship structures are thin-walled structures and lots of cutouts, for example, of inner bottom structure, girder, upper deck hatch, floor and dia-frame etc. In the case where a plate has cutout it experiences reduced buckling and ultimate strength and at the same time the in-plane stress under compressive load produced by hull girder bending will be redistributed. In the present paper, we investigated several kinds of perforated stiffened model from actual ship structure and series of elasto-plastic large deflection analyses were performed to investigate into the influence of perforation on the buckling and ultimate strength of the perforated stiffened plate varying the cutout ratio, web height, thickness and type of cross-section by commercial FEA program(ANSYS). Closed-form formulas for predicting the ultimate strength of the perforated stiffened plate are empirically derived by curve fitting based on the Finite Element Analysis results. These formulas are used to evaluate the ultimate strength, which showed good correlation with FEM results. These results will be useful for evaluating the ultimate strength of the perforated stiffened plate in the preliminary design.

Evaluation of Bearing Capacity of Waveform Micropile by Numerical Analyses (수치해석을 이용한 파형 마이크로파일의 지지거동 분석)

  • Han, Jin-Tae;Kim, Sung-Ryul;Jang, Young-Eun;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5906-5914
    • /
    • 2013
  • Recently in Korea, the policy is being proceeded to build a intergenerational housing on artificial ground of railroad site for utilizing rental house. Due to narrow space of rail road site, suitable method have to be developed such as micropiles which is known as a method of a fast construction. However, If micropile is used as foundations for the super structure, construction cost is increases compared with other pile. Consequently, new concept micropile proposed to improve both bearing capacity and cost efficiency of general micropile. New concept micropile consists of waveform cement grout surrounding tread bar that formed by grouting the soil layer with jet grouting method as control the grout pressure and flow. The micropile with waveform is expected to decrease the construction cost by cut down pile length of general micropile. This paper examined the behavior of the new concept micropile with waveform subjected to axial load using two-dimensional axisymmetric numerical analyses method. According to the numerical result, there will cost effectiveness as the pile displacement decreased despite the length of waveform micropile is down about 5% from a general micropile under the same loading condition. Also, the effect of skin friction force which mobilized from the waveform of micropile appeared at relatively soft ground.

Experimental Curvature Analysis of Reinforced Concrete Piers with Lap-Spliced Longitudinal Steels subjected to Seismic Loading (지진하중을 받는 주철근 겹침이음된 철근콘크리트 교각의 곡률분석)

  • Chung, Young-Soo;Park, Chang-Kyu;Song, Hee-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.41-49
    • /
    • 2006
  • Through the 1982 Urahawa-ohi and the 1995 Kobe earthquakes, a number of bridge columns were observed to develop a flexural-shear failure due to the bond slip as a consequence of premature termination of the column longitudinal reinforcement. Because the seismic behavior of RC bridge piers is largely dependent on the performance of the plastic hinge legion of RC bridge piers, it is desirable that the seismic capacity of RC bridge pier is to evaluate as a curvature ductility. The provision for the lap splice of longitudinal steel was not specified in KHBDS(Korea Highway Bridge Design Specification) before the implementation of 1992 seismic design code, but the lap splice of not more than 50%, longitudinal reinforcement was newly allowed in the 2005 version of the KHBDS. The objective of this research is to investigate the distribution and ductility of the curvature of RC bridge column with the lap splice of longitudinal reinforcement in the plastic hinge legion. Six (6) specimens were made in 600 mm diameter with an aspect ratio of 2.5 or 3.5. These piers were cyclically subjected to the quasi-static loads with the uniform axial load of $P=0.1f_{ck}A_g$. According to the slip failure of longitudinal steels of the lap spliced specimen by cyclic loads, the curvatures of the lower and upper parts of the lap spliced region were bigger and smaller than the corresponding paris of the specimen without a lap splice, respectively. Therefore, the damage of the lap spliced test column was concentrated almost on the lower part of the lap spliced region, that appeared io be failed in flexure.

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

A Study on Behavior Characteristics of Precast Coping Part under Axial Load (축하중을 받는 프리캐스트 코핑부의 거동 특성 연구)

  • Won, Deok-Hee;Lee, Dong-Jun;Kim, Seung-Jun;Kang, Young-Jong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.281-287
    • /
    • 2011
  • Recently, bridge construction technology has made great progress from development of high performance materials and new bridge types. However, most technology are based on methods of cast-in-place and material cost saving. The method of cast-in-place concrete causes environmental damages and costumer complaints. Especially, under bad weather conditions, the construction can not proceed. To overcome these disadvantages, new construction methods were developed to reduce construction time. These methods are called precast method. Most prefabricated methods have been applied to superstructure constructions of bridges, but very minutely applied to substructure constructions. The most important agendas on precast method are light weight and transportability of the precasted members, because very strict transporting specifications exist for road transportation of the precasted members. For example, the weight and length of coping members may be larger than the available transporting vehicles. Although column is constructed by precast method to save construction time, if coping member is constructed by cast-in-place method, then the column construction time reduction becomes meaningless. Therefore, in this study, a new precast coping member and a connecting system of column-coping member are proposed. The proposed method is verified by analyzing their ultimate performance through analysis and experimental study.

Effects of Four Sides Constraint for Shear Strength of ${\sharp}$ Shape Double Beam-Column Connections (정(${\sharp}$)자형 더블보-기둥 접합부의 전단강도에 대한 4변 구속의 영향)

  • Kim, Lyang-Woon;Chung, Chang-Yong;Lee, Soo-Kueon;Kim, Sang-Sik;Choi, Kwang-Ho;Lee, Jung-Yoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.209-212
    • /
    • 2008
  • DBS method of underground works can reduce the term of works for manufacturing the underground members in factory and producing members in modularization, apart from that, the horizontal member could be used as permanent members, which are the advantages of this method. As the component element of DBS method, in order th transfer the vertical load on horizontal member to the column during the construction or in service, developed ${\sharp}$ shaped double beam-column connection is dominated by shear failure in the complicated state of multi-axial stresses. In this study, in order to check the shear-failure mechanism of ${\sharp}$ shaped connection of double beam-column and an increase of shear internal force with the thickness of the steel plate. 7 specimens were made and one-way static tests. All of the specimens were subjected to brittle failure. Constraint of slab will increase its shear strength by 1.06${\sim}$1.48 times. Shear strength of slabs with different constraints steel plate in two-way increase more than which are same. So the slab with different constraints steel plate will be more effective.

  • PDF

Seismic Curvature Ductility of RC Bridge Piers with 2.5 Aspect Ratio (형상비 2.5의 RC 교각의 내진 곡률연성도)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • Due to the 1989 Loma Prieta, 1995 Hyogoken Nambu earthquakes, etc, a number of bridge columns  were collapsed in flexure-shear failures as a consequence of the premature termination of the column longitudinal reinforcement. Nevertheless, previous researches for the performance of bridge columns were concentrated on the flexural failure mode. It is well understood that the seismic behaviour of RC bridge piers was dependent on the performance of the plastic hinge of RC bridge piers, the ductility of which was desirable to be computed on the basis of the curvature. Experimental investigation was made to evaluate the variation of the curvature of the plastic hinge  region for the seismic performance of earthquake-damaged RC columns in flexure-shear failure mode. Seven test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading under a constant axial load, $P=0.1f_{ck}A_g$. Residual seismic capacity of damaged specimens was evaluated by analzying the moment-curvature hysteresis and the curvature ductility. Test results show that the biggest curvature was developed around 15cm above the footing, which induced the column failure. It was observed that RC bridge specimens with lap-spliced longitudinal steels appeared to fail at low curvature ductility but significant improvement was made in the curvature ductility of RC specimens with FRP straps wrapped around the plastic hinge region. Based on the experimental variation of the curvature of RC specimens, new equivalent length of the plastic hinge region was proposed by considering the lateral confinement in this study. The analytical and experimental relationship between the displacement and the curvature ductility were compared based on this proposal, which gave excellent result.

Experimental and numerical investigations on remaining strengths of damaged parabolic steel tubular arches

  • Huang, Yonghui;Liu, Airong;Pi, Yong-Lin;Bradford, Mark A.;Fu, Jiyang
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • This paper presents experimental and numerical studies on effects of local damages on the in-plane elastic-plastic buckling and strength of a fixed parabolic steel tubular arch under a vertical load distributed uniformly over its span, which have not been reported in the literature hitherto. The in-plane structural behaviour and strength of ten specimens with different local damages are investigated experimentally. A finite element (FE) model for damaged steel tubular arches is established and is validated by the test results. The FE model is then used to conduct parametric studies on effects of the damage location, depth and length on the strength of steel arches. The experimental results and FE parametric studies show that effects of damages at the arch end on the strength of the arch are more significant than those of damages at other locations of the arch, and that effects of the damage depth on the strength of arches are most significant among those of the damage length. It is also found that the failure modes of a damaged steel tubular arch are much related to its initial geometric imperfections. The experimental results and extensive FE results show that when the effective cross-section considering local damages is used in calculating the modified slenderness of arches, the column bucking curve b in GB50017 or Eurocode3 can be used for assessing the remaining in-plane strength of locally damaged parabolic steel tubular arches under uniform compression. Furthermore, a useful interaction equation for assessing the remaining in-plane strength of damaged steel tubular arches that are subjected to the combined bending and axial compression is also proposed based on the validated FE models. It is shown that the proposed interaction equation can provide lower bound assessments for the remaining strength of damaged arches under in-plane general loading.