• Title/Summary/Keyword: axial hydraulic turbine

Search Result 12, Processing Time 0.014 seconds

Optimal Design of Two-Dimensional Cascade with Shock-Free Inflow Criterion

  • Muis, Abdul;Sutikno, Priyono;Soewono, Aryadi;Hartono, Firman
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.362-369
    • /
    • 2016
  • The shock-free inflow criterion applied in the development of two-dimensional cascade for turbomachinery design. The developed cascade analysis with potential flow calculation through a panel method has been used to determine the shock-free inflow condition. The combination between cascade analysis and PSO (particle swarm optimization) algorithm provides an opportunity to develop a diagram of a two-dimensional parameter cascade at various airfoil shapes. Analytical equations have been derived from the diagram that will facilitate the turbomachinery designer in applying the shock-free inflow criterion on their developed cascade. This method has been used to develop the very low head axial hydraulic turbine and provides excellent results of numerical and actual prototype performances.

Quantitative and qualitative analysis of the flow field development through T99 draft tube caused by optimized inlet velocity profiles

  • Galvan, Sergio;Reggio, Marcelo;Guibault, Francois;Solorio, Gildardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.283-293
    • /
    • 2015
  • The effect of the inlet swirling flow in a hydraulic turbine draft tube is a very complex phenomenon, which has been extensively investigated both theoretically and experimentally. In fact, the finding of the optimal flow distribution at the draft tube inlet in order to get the best performance has remained a challenge. Thus, attempting to answer this question, it was assumed that through an automatic optimization process a Genetic Algorithm would be able to manage a parameterized inlet velocity profile in order to achieve the best flow field for a particular draft tube. As a result of the optimization process, it was possible to obtain different draft-tube flow structures generated by the automatic manipulation of parameterized inlet velocity profiles. Thus, this work develops a qualitative and quantitative analysis of these new draft tube flow field structures provoked by the redesigned inlet velocity profiles. The comparisons among the different flow fields obtained clearly illustrate the importance of the flow uniformity at the end of the conduit. Another important aspect has been the elimination of the re-circulating flow area which used to promote an adverse pressure gradient in the cone, deteriorating the pressure recovery effect. Thanks to the evolutionary optimization strategy, it has been possible to demonstrate that the optimized inlet velocity profile can suppress or mitigate, at least numerically, the undesirable draft tube flow characteristics. Finally, since there is only a single swirl number for which the objective function has been minimized, the energy loss factor might be slightly affected by the flow rate if the same relation of the axial-tangential velocity components is maintained, which makes it possible to scale the inlet velocity field to different operating points.