• 제목/요약/키워드: axial gap

Search Result 252, Processing Time 0.028 seconds

Design and Characteristics Analysis of Dual Air-Gap Axial-Flux type Permanent-Magnet Synchronous Generator (2중 공극형 횡자속 영구자석 동기발전기 설계 및 특성분석)

  • Bae, Sung-Woo;Hwang, Don-Ha;Kang, Do-Hyun;Kim, Yong-Joo;Choi, Kyeong-Ho;Kim, Dong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1063-1066
    • /
    • 2003
  • This paper presents the design and characteristics analysis of axial-flux permanent-magnet (PM) synchronous generator of two air-gap. Dual axial-flux type PM synchronous generator commonly appears in applications where the generator axial dimension is more limited than the radial dimension. The strengths of dual axial-flux generator include ; (1) by employing two air-gaps, the rotor-stator attractive forces are balanced and no net axial or thrust load appeals on the generator hearings ; (2) heat produced by the stator windings appears on the outside of the generator, making it relatively easy to remove, and so on. In this paper, the simple magnetic equivalent circuit approach is used for initial design iteration, and the finite-element method is applied to analyze the detailed characteristics. The test results of driving characteristics are presented as well. The results are very similar to predicted performance of design.

  • PDF

Cold Acoustic Tests for the Elucidation of the Gap of Optimal Damping Capacity of Baffled Injectors in Liquid Rocket Combustors (로켓연소기에서 분사기형 배플의 간극에 따른 감쇠특성 파악을 위한 상온음향시험)

  • Kim, Hong-Jip;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • Cold acoustic tests have been performed to elucidate the effect of baffle gaps on the optimal damping characteristics in a liquid rocket combustor where coaxial injectors are installed. For several axial baffle lengths, an optimal acoustic damping capacitance has been achieved in a certain gap range. Cold acoustic tests for simulating fluid viscosity by changing the pressure in a model chamber have been done to study the main mechanism of optimal damping. Experimental data have shown that the optimal gap for high damping capacity exists mainly due to the viscosity near the gap of baffles. Therefore, axial baffle length can be reduced by using the optimal baffle gap, providing a possible solution of thermal cooling problems. Also, these optimum characteristics can be some guidelines for manufacturing and assembling injectors in full-scaled rocket combustors.

A Numerical Study on a Supersonic Turbine Performance Characteristics with Different Nozzle-Rotor Axial Gap Spacings (노즐-로터 축간극 거리에 따른 초음속 터빈 내의 성능특성에 대한 수치적 연구)

  • Jeong, Sooin;Choi, Byoung-ik;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-38
    • /
    • 2015
  • In this study, 3-dimensional URANS simulation was performed to analyze the effect of the nozzle-rotor axial gap spacing of a supersonic impulse turbine on turbine performance. The computations were conducted for four different axial gap cases corresponding to about 6%, 10%, 20% and 30% of the blade height, respectively. The results show a good agreement with previous studies and the turbine efficiency decreases drastically in certain range. It is examined that the turbine performance characteristics could change depending on the influence of leading edge shock to the nozzle outlet. It is also found that the entropy rise distributions along the span differ from each other.

Effect of tip-leakage flow on an isolated rotor of an axial compressor (축류압축기의 회전차에 관한 누설유동의 영향)

  • Yim Dongwook;Ahmed N. A.;Lee Myeongho;Milton B. E.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.619-622
    • /
    • 2002
  • It has been recognized that the flow in the blade passage of an axial turbomachinery rotor is very complex and is influenced by various flow phenomena, of which the tip leakage flow passing through the gap between rotor blade tip and casing plays a significant role. The losses produced due to the existence of the clearance have been known to be a large contributor of the rotor overall losses. Despite several experimental studies on non-rotating blade in the cascade configuration, and on actual rotating blades, the detailed nature of the complex flow phenomena associated with tip leakage, however, remains largely unresolved. Thus, a single-stage compressor test rig was built and measurements were taken at upstream and downstream of the rotor of this compressor at the aerodynamics laboratory of University of New South Wales. A five-hole probe and a hot-wire probe were used to measure mean and fluctuating flow parameters. The results show that tip leakage losses rise rapidly beyond tip gap of 0.01 Furthermore, the present project also identifies the regions in the wake behind the rotor of the axial compressor where such losses are concentrated. These results should be useful in the better design of rotors for improved performance of axial compressor.

  • PDF

Influence of the length and width of the slots of contact electrode on axial magnetic field at the mid-gap in 4 segment coil type vacuum interrupter (4 segment 코일타입 전극구조의 진공 인터럽터에서 접점전극의 슬롯의 길이와 폭이 전극사이의 측자계에 미치는 영향)

  • Kim, Byong-Chul;Yoon, Jae-Hun;Park, Seong-Hee;Kang, Seong-Hwa;Lim, Kee-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.210-211
    • /
    • 2007
  • Once high current flows through the vacuum interrupter, eddy current occurs due to the time-varying axial magnetic field caused by the current(AC) and it causes a decrease in axial magnetic field generated by current flowing through coil electrode. but if there are slots on contact electrode it is possible to increase the amplitude of axial magnetic field by reducing the influence of eddy current. there has been many studies about the number of slot of the contact electrode[1][2][3]. In this paper, in addition to these previous results we deal with the influence of the length and width of the slots on axial magnetic field at the mid-gap plane in 4 segment coil type vacuum interrupter by using 3D finite element method software.

  • PDF

An Experimental Study. on Dynamic Characteristics of Submerged Co-axial Cylinderical Shells (수중 동축원통쉘 구조물의 경계조건 변화에 따른 동특성 시험)

  • 박진호;류정수;김태룡;심우건
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.668-674
    • /
    • 2001
  • An experimental study was performed for two types of co-axial cylindrical shell structures in order to establish the relationship between in-air dynamic characteristics and in-water ones and to observe hydrodynamic mass effects on their mode shapes when submerged. The outer cylinders are prepared with two kinds to get more insights on the fluid-structure interaction phenomena: one is flexible, which means that the outer cylinder has almost same stiffness as the inner one, and the other is a rigid one whose stiffness is more than ten times of the inner one's(it might be regarded as the scaled-down model of the reactor internals). The finite element. analyses were also implemented to support the experimental results. The results show that the natural frequencies of a co-axial cylindrical shell structure in water are remarkably lower than those in air due to the fluid mass effects. In case of the flexible-to-flexible cylinders, there exist in-phase and out-of-phase mode shapes and they are affected by the annular gap between the. co-axial cylinders. For the in-phase mode the in-water natural frequency decreases exponentially as the gap increases, while it slightly increases in case of the out-of-phase mode due to the squeezing effect of the gap fluid. In the flexible-to-rigid case, the normalized natural frequency(in-water frequency/in-air one) of the inner cylinder(core barrel model) ranges between in-phase and out-of-phase mode frequencies of the flexible-to-flexible co-axial cylindrical structure having identical dimensions. Also the normalized natural frequency of the inner cylinder of the flexible-to-rigid one moves from near of the in-phase mode frequency into the out-of-phase mode value of the flexible-to-flexible case as circumferential mode number(n) increases.

  • PDF

Nonlinear Sliding Mode Control of an Axial Electromagnetic Levitation System by Attractive Force (흡인력을 이용한 자기 부상계의 비선형 슬라이딩 모드 제어)

  • 이강원;고유석;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.165-171
    • /
    • 1998
  • An axial electromagnetic levitation system using attractive force is a highly nonlinear system due to the nonlinearity of materials, variable air gap and flux density. To control the levitating system with large air gap, a conventional PID control based on the linear model is not satisfactory to obtain the desired performance and the position tracking control of the sinusoidal motion by simulation results. Thus, sliding mode control(SMC) based on the input-output linearization is suggested and evaluated by simulation and experimental approaches. Usefulness of the SMC to this system is conformed experimentally. If the expected variation of added mass can be included in the gain conditions and the model, the position control performance of the electromagnetic levitation system with large air gap will be improved with robustness.

  • PDF

A study on the Production of Ozonized Water for Environment Improvement by Gaseous Discharge (기체방전을 이용한 환경개선용 오존수 제조에 관한 연구)

  • Lee, C.H.;Soong, H.J.;Yoon, B.H.;Kim, J.H.;Lee, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.192-193
    • /
    • 2006
  • In this paper, a co-axial type ozonizer varied with discharge gap was designed and manufactured for investigating (1) discharge characteristics with variation of output voltage power supply, flow rate and gap distance (2) ozone generation and solubility characteristics with variation of flow rate, gap distance and discharge power. Pure oxygen was used as process gas of the co-axial type ozonizer.

  • PDF

Characteristic Analysis of Axial-gap Motor using Magnetic Charge (Magnetic charge를 이용한 Axial-gap 전동기의 특성해석)

  • Lee, Sang-Ho;Kim, Do-Jin;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.997-998
    • /
    • 2007
  • This paper deals with analytical solution concerning the image method using the magnetic charge instead of 3D FEA(finite element analysis) in the slotless single air-gap motor. The theory of analytical method and the design procedures are introduced. The reliability and validity of proposed analytical solution are verified through the comparison with the results of commercial 3D FE software. In addition, calculation time between proposed analytical solution and 3D FEA is compared. Finally, characteristics, such as Back-EMF and phase resistance, between calculated and experimental results are compared. From the verification with 3D FEA and experimental results, it is proved that presented analytical method provided very effective and precise results.

  • PDF

Characteristics of Ozonizer with Variation of Vaccum in Internal Electrode (고주파전원형 오존발생기의 방전 캡 변화 특성)

  • 이창호;전병준;이상근;송현직;이광식
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.381-385
    • /
    • 2003
  • In this paper, a co-axial type ozonizer varied with discharge gap was designed and manufactured for investigating $\circled1$ discharge characteristics with variation of output voltage power supply, flow rate and gap $\circled2$ ozone generation characteristics with variation of flow rate, gap and discharge power. pure oxygen was used as process gas of the co-axial type ozonizer. In this paper, a double cylindrical type superposed silent discharge type ozonizer which internal electrode can be produced a vacuum has been designed and manufactured. Discharge and ozone generation characteristics have been investigated in accordance with output voltage of power supply, flow-rate, discharge power and vacuum of internal electrode.

  • PDF