• Title/Summary/Keyword: axial forces

Search Result 584, Processing Time 0.025 seconds

가설흙막이의 버팀대 선행하중량과 흙막이 벽체 변형등에 대한 분석

  • Kim, Hak-Cheong;Jeong, Gwang-Ryeol
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.35-44
    • /
    • 2006
  • Supporting method of a Temporary retaining wall for underground excavation project are adopted by systems of strut, anchor, nail, raker, etc. Strut system and Raker system of these methods are mostly used preloading jack to minimize deformations of retaining wall. We determinate efficient preloading to analysis these strut-preloadings, deformations of retaining wall, axial forces, and etc.. This study is analysed that preloading applied 0%, 10%, 20%, 30%, ...., 100% for strut and raker installed by CIP temporary retaining wall. This study results that adequate preloadings were determined to analysis correlations of preloading, deformations of wall, maximum bending moment, axial force of strut, and displacement of surrounding.

  • PDF

Evaluation of energy response of space steel frames subjected to seismic loads

  • Ozakgul, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.54 no.4
    • /
    • pp.809-827
    • /
    • 2015
  • In this paper, seismic energy response of inelastic steel structures under earthquake excitations is investigated. For this purpose, a numerical procedure based on nonlinear dynamic analysis is developed by considering material, geometric and connection nonlinearities. Material nonlinearity is modeled by the inversion of Ramberg-Osgood equation. Nonlinearity caused by the interaction between the axial force and bending moment is also defined considering stability functions, while the geometric nonlinearity caused by axial forces is described using geometric stiffness matrix. Cyclic behaviour of steel connections is taken into account by employing independent hardening model. Dynamic equation of motion is solved by Newmark's constant acceleration method in the time history domain. Energy response analysis of space frames is performed by using this proposed numerical method. Finally, for the first time, the distribution of the different energy types versus time at the duration of the earthquake ground motion is obtained where in addition error analysis for the numerical solutions is carried out and plotted depending on the relative error calculated as a function of energy balance versus time.

Analysis of Non-Uniform Inflow Fan Noise (비균일 입류에 의한 팬소음 해석)

  • Chung, Ki-Hoon;Choi, Han-Lim;Yun, Young-Il;Lee, Sang-Hyeon;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.106-112
    • /
    • 2000
  • Axial fans are widely used in heavy machines due to their ability to produce high flow rate for cooling of engines. At the same time. the noise generated by these fans causes one of the most serious problems. This work is concerned with the low noise technique of discrete frequency noise. The prediction model. which allowed the calculation of acoustic pressure at the blade passing frequency and it's harmonics. has been developed by Farrasat. This theory is founded upon the acoustic radiation of unsteady forces acting on blade. To calculate the unsteady resultant force over the fan blade. Time-Marching Free-Wake Method are used. The fan noise of fan system having unsymmetric engine-room is predicted. In this paper, the discussion is confined to the performance and discrete noise of axial fan and front part of engine room in heavy equipments.

  • PDF

Mechanical Property and Problems of the Self-expandable Metal Stent in Pancreaticobiliary Cancer

  • Thanawat Luangsukrerk
    • Journal of Digestive Cancer Research
    • /
    • v.10 no.2
    • /
    • pp.92-98
    • /
    • 2022
  • Self-expandable metal stent (SEMS) is effective for biliary drainage, especially in pancreaticobiliary cancer. The mechanical properties, material, and design of SEMS are important in preventing recurrent biliary obstruction and complication. Radial and chronic expansion forces play roles in preventing stent migration and collapse. Complications, such as stent impaction, cholecystitis, and pancreatitis, were related to the axial force. The nickel-titanium alloy shows more flexibility, conformability, and optimal axial force compared to previously used stainless steel. Additionally, the stent structure affected the mechanical properties of SEMS. Therefore, understanding the mechanical properties, material, and design of SEMS will provide the best outcome for biliary drainage, as well as better SEMS development.

Distortional buckling of cold-formed lipped channel columns subjected to axial compression

  • Zhou, Wangbao;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.23 no.3
    • /
    • pp.331-338
    • /
    • 2017
  • Cold-formed lipped channel columns (CFLCCs) have been widely used in light gauge steel constructions. The distortional buckling is one of the important buckling modes for CFLCCs and the distortional buckling critical load depends significantly on the rotational restrain stiffness generated by the web to the lipped flange. First, a simplified explicit expression for the rotational restraint stiffness of the lipped flange has been derived. Using the expression, the characteristics of the rotational restraint stiffness of the lipped flange have been investigated. The results show that there is a linear coupling relationship between the applied forces and the rotational restraint stiffness of the lipped flange. Based on the explicit expression of the rotational restraint stiffness of the lipped flange, a simplified analytical formula has been derived which can determine the elastic distortional buckling critical stress of the CFLCCs subjected to axial compression. The simplified analytical formula developed in this study has been shown to be accurate through the comparisons with results from the distortional buckling analyses using the ANSYS finite element software. The developed analytical formula is easy to apply, and can be used directly in practical design and incorporated into future design codes and guidelines.

A Comparison of Energy Loss Characteristics between Radial and Axial Magnetic Field Type Vacuum Switches (대전력 펄스용 횡자계형 및 종자계형 진공스위치의 에너지 손실 특성 비교)

  • 이태호;허창수;이홍식
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.3
    • /
    • pp.130-136
    • /
    • 2003
  • Crowbar system Vacuum switches, widely used In a pulsed power system, could use the magnetic force to prevent the electrode damage. Vacuum switches using the magnetic forces are classified roughly into RMF(Radial Magnetic Field) and AMF(Axial Magnetic Field) type. The RMF type switches restrain a main electrode from aging due to high temperature and high density arc by rotating the arc which is driven by the Lorenz force. The AMF type switches generate axial magnetic field which decreases the electrode damage by diffusing arc. In this paper, we present the energy loss characteristics of both RMF and AMF type switches which are made of CuCr(75:25 wt%) electrodes. The time-dependent dynamic arc resistance of high-current pulsed discharge in a high vacuum chamber(~10$^{-6}$ Torr). which occurs in RMF and AMF type switches, was obtained by solving the circuit equation using the measured values of the arc voltage and current. In addition, we compared energy loss characteristics of both switches. Based on our results, it was found that the arc voltage and the energy loss of an AMF type switch are lower than a RMF type switch.

A new and simple analytical approach to determining the natural frequencies of framed tube structures

  • Mohammadnejad, Mehrdad;Kazemi, Hasan Haji
    • Structural Engineering and Mechanics
    • /
    • v.65 no.1
    • /
    • pp.111-120
    • /
    • 2018
  • This paper presents a new and simple solution for determining the natural frequencies of framed tube combined with shear-walls and tube-in-tube systems. The novelty of the presented approach is based on the bending moment function approximation instead of the mode shape function approximation. This novelty makes the presented solution very simpler and very shorter in the mathematical calculations process. The shear stiffness, flexural stiffness and mass per unit length of the structure are variable along the height. The effect of the structure weight on its natural frequencies is considered using a variable axial force. The effects of shear lag phenomena has been investigated on the natural frequencies of the structure. The whole structure is modeled by an equivalent non-prismatic shear-flexural cantilever beam under variable axial forces. The governing differential equation of motion is converted into a system of linear algebraic equations and the natural frequencies are calculated by determining a non-trivial solution for the system of equations. The accuracy of the proposed method is verified through several numerical examples and the results are compared with the literature.

Stress Analysis of Posterior Porcelain-Fused-to-Metal Crown by Marginal Configurations (구치부(臼齒部) 도재전장주조관(陶在前裝鑄造冠) 변연형태(邊緣形態)에 따른 응력분석(應力分析))

  • Kim, Kwang-Seok;Song, Kwang-Yup;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.161-179
    • /
    • 1987
  • To study the mechanical behaviors of the margins of porcelain-fused-to-metal crown on the posterior teeth, 5 types of margins on the lower first molar were chosen, and then the finite element models were constructed. 50kg forces were applied to the porcelain on the axial wall supported by the metal vertically. The displacements and stresses of the porcelain-fused-to-metal crown were analyzed to investigate the influence of the type of margins. The results were as follows; 1. High tensile stresses were exhibited on the porcelain of the portion of the coronal line angle insufficient metallic support. 2. In case metal coping had a good supporting form to vertical force, uniform compressive stresses were exhibited on their supporting form. 3. Tensile stresses in the inframetallic margin on the series of the shoulder with a bevel margins were decreased in the bevel portion. 4. Principal stresses on the metal of the chamfer marginal portion were decreased comparing with the series of the shoulder margins. 5. The noticeable compressive stress gradients were exhibited between axial cement layer and metal on the series of the shoulder margins. 6. The principal stresses on the marginal cement layer were higher than that of the occlusal surface and axial wall.

  • PDF

Cap truss and steel strut to resist progressive collapse in RC frame structures

  • Zahrai, Seyed Mehdi;Ezoddin, Alireza
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.635-647
    • /
    • 2018
  • In order to improve the efficiency of the Reinforced Concrete, RC, structures against progressive collapse, this paper proposes a procedure using alternate path and specific local resistance method to resist progressive collapse in intermediate RC frame structures. Cap truss consists of multiple trusses above a suddenly removed structural element to restrain excessive collapse and provide an alternate path. Steel strut is used as a brace to resist compressive axial forces. It is similar to knee braces in the geometry, responsible for enhancing ductility and preventing shear force localization around the column. In this paper, column removals in the critical position at the first story of two 5 and 10-story regular buildings strengthened using steel strut or cap truss are studied. Based on nonlinear dynamic analysis results, steel strut can only decrease vertical displacement due to sudden removal of the column at the first story about 23%. Cap truss can reduce the average vertical displacement and column axial force transferred to adjacent columns for the studied buildings about 56% and 61%, respectively due to sudden removal of the column. In other words, using cap truss, the axial force in the removed column transfers through an alternate path to adjacent columns to prevent local or general failure or to delay the progressive collapse occurrence.

An alternative evaluation of the LTB behavior of mono-symmetric beam-columns

  • Yilmaz, Tolga;Kirac, Nevzat;Anil, O zgur
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.471-481
    • /
    • 2019
  • Beam-columns are structural members subjected to a combination of axial and bending forces. Lateral-torsional buckling is one of the main failure modes. Beam-columns that are bent about its strong axis may buckle out of the plane by deflecting laterally and twisting as the values of the applied loads reach a limiting state. Lateral-torsional buckling failure occurs suddenly in beam-column elements with a much greater in-plane bending stiffness than torsional or lateral bending stiffness. This study intends to establish a unique convenient closed-form equation that it can be used for calculating critical elastic lateral-torsional buckling load of beam-column in the presence of a known axial load. The presented equation includes first order bending distribution, the position of the loads acting transversely on the beam-column and mono-symmetry property of the section. Effects of axial loads, slenderness and load positions on lateral torsional buckling behavior of beam-columns are investigated. The proposed solutions are compared to finite element simulations where thin-walled shell elements including warping are used. Good agreement between the analytical and the numerical solutions is demonstrated. It is found out that the lateral-torsional buckling load of beam-columns with mono-symmetric sections can be determined by the presented equation and can be safely used in design procedures.