• Title/Summary/Keyword: axial compressive load

Search Result 349, Processing Time 0.024 seconds

Compressive behavior of short fibrous reinforced concrete members with square cross-section

  • Campione, G.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.649-669
    • /
    • 2011
  • In this paper an analytical model is presented that addresses the compressive response of short-fiber reinforced concrete members (FRC) with hooked steel fibers. This model is applicable to a wide range of concrete strengths and accounts for the interaction between the cover spalling and the concrete core confinement induced by transverse steel stirrups and also for buckling of longitudinal reinforcing bars. The load-shortening curves generated here analytically fit existing experimental data well.

An Effects of Lateral Reinforcement of High-Strength R/C Columns Subjected to Reversed Cyclic and High-Axail Force (고축력과 반복횡력을 받는 고강도 R/C기둥의 횡보강근 효과)

  • 신성우;안종문
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.3-10
    • /
    • 1999
  • Earthquake resistant R/C frame structures are generally designed to prevent the columns from plastic hinging. R/C columns under higher axial load or strong earthquake showed a brittle behavior due to the deterioration of strength and stiffness degradation. An experimental study was conducted to examine the behavior and to find the relationship between amounts of lateral reinforcements and compressive strength of ten R/C column specimens subjected to reversed cyclic lateral load and higher axial load. Test results are follows : An increase in the amount of lateral reinforcement results in a significant improvement in both ductility and energy dissipation capacities of columns. R/C columns with sub-tie provide the improved ductility capacity than those with closely spaced lateral reinforcement only. While the load resisting capacity of the high strength R/C columns is higher than the normal strength concrete columns under both an identical ratio of lateral reinforcement, however the ductility capacity of high strength R/C columns is decreased considerably. Therefore, the amounts of lateral reinforcement must be designed carefully to secure the sufficient ductility and economic design of HSC columns under higher axial load.

Compressive performances of concrete filled Square CFRP-Steel Tubes (S-CFRP-CFST)

  • Wang, Qingli;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.455-480
    • /
    • 2014
  • Sixteen concrete filled square CFRP-steel tubular (S-CFRP-CFST) stub columns under axial compression were experimentally investigated. The experimental results showed that the failure mode of the specimens is strength loss of the materials, and the confined concrete has good plasticity due to confinement of the CFRP-steel composite tube. The steel tube and CFRP can work concurrently. The load versus longitudinal strain curves of the specimens can be divided into 3 stages, i.e., elastic stage, elasto-plastic stage and softening stage. Analysis based on finite element method showed that the longitudinal stress of the steel tube keeps almost constant along axial direction, and the transverse stress at the corner of the concrete is the maximum. The confinement effect of the outer tube to the concrete is mainly focused on the corner. The confinements along the side of the cross-section and the height of the specimen are both non-uniform. The adhesive strength has little effect both on the load versus longitudinal strain curves and on the confinement force versus longitudinal strain curves. With the increasing of the initial stress in the steel tube, the load carrying capacity, the stiffness and the peak value of the average confinement force are all reduced. Equation for calculating the load carrying capacity of the composite stub columns is presented, and the estimated results agree well with the experimental results.

The Point Load Index of the Daegu Shale and its Relation to the Uniaxial Compressive Strength (대구지역 셰일의 점재하지수 특성 및 일축압축강도와의 상관성)

  • Lee, Younghuy;Youn, Chanho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.3
    • /
    • pp.37-45
    • /
    • 2009
  • The experimental study was carried out to evaluate the characteristics of the point load index and the uniaxial compressive strength of inherently anisotropic shale in the laboratory. In the testing program the effects of size and the shape on the point load index were investigated both in the axial and diametral direction. In general, the point load index of the shale was constant when the length/diameter (L/D) ratio of the specimen is greater than 1.0 in the diametral direction. The point load index in axial direction shows slight decrease as the L/D ratio is increased and the corner breakage was observed when L/D ratio is greater than unity. The minimum point load index was observed in the bedding angle of $\beta=15^{\circ}{\sim}30^{\circ}$ in the axial point load tests and of $\beta=30^{\circ}$ in the uniaxial compression tests. The relationship between the point load index and the uniaxial compressive strength was linear to ${\sigma}_c=25.0 I_{s(50)}$ for the specimen with the bedding plane angle, $\beta$ at the range of $0^{\circ}{\sim}90^{\circ}$. On the other hand, this relationship was appeared linear to ${\sigma}_c=14.4 I_{s(50)}$ when the bedding angle, $\beta$ is fixed to 90${^{\circ}}$ and this correlation is much different from ${\sigma}c=22 I_{s(50)}, which is generally applied to the rock specimen with no bedding plane in ISRM (1985). The anisotropic strength with different $\beta$ angle shows the shoulder type and this can be suitably modelled by the corrected Ramamurthy'(1993)s equation with the index value of 'n' equal to 3.0.

  • PDF

An Experimental Study on the Concrete Filled Circular Steel Columns with D/t (지름두께비를 고려한 콘크리트충전 원형강관기둥에 관한 실험적 연구)

  • 한병찬;임경택;엄철환;연길환;윤석천;정수영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.215-218
    • /
    • 1995
  • This paper presents an experimental study on the strength and deformation of concrete-filled circular steel short columns. Six specimens of concrete-filled circular short columns were tested under concentric compressive load. For comparsion, three specimens of circular steel short columns were also loaded to failure. The ultimate strength, ductility, and confinement mechanism of columns were compared. In the comparison, the effect of witch-thickness ratio and concrete compressive strength on the behavior of colimns were examed. As a result, the axial load verse axial average strain relationship of concrete-filled circular steel columns was very stable, because of interactions between the concrete and steel, the strength are 13% and 30% larger than the strength extimated by simply superimposed method of the concrete and steel. The ratio of the circumferential to longitudinal strain increment, both measured on the steel suface, was 0.28 up to the longitudinal strain of 0.1%, increases from 0.3 to 0.8 between the strain of 0.1% to 0.3%, and 0.8 beyond the strain of 0.3%

  • PDF

COMPRESSIVE STRENGH OF FRP-CONFINED CONCRETE COLUMNS UNDER THE ECCENTRIC LOADS

  • H.R. Salehian;M.R. Esfahani
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.978-982
    • /
    • 2009
  • In recent years, due to some excellent properties of fiber reinforced polymer (FRP) composites, the use of FRP sheets for strengthening the weak concrete columns have become increasingly popular. Axial loading is the basic assumption in most of the models that are presented for estimating the compression strength of confined concrete columns. However a large number of weak concrete columns in the bending frames are under the combination of both axial and flexural loads. This paper presents the results of an experimental study on the effects of eccentricity of load on the compressive strength of concrete columns confined by FRP sheets. This research shows that the eccentricity of compression load affects decreasingly the performance of confining FRP jacket in confined columns.

  • PDF

Effects of Transverse Reinforcement on Strength and Ductility of High-Strength Concrete Columns

  • Hwang, Sun Kyoung;Lim, Byung Hoon;Kim, Chang Gyo;Yun, Hyun Do;Park, Wan Shin
    • Architectural research
    • /
    • v.7 no.1
    • /
    • pp.39-48
    • /
    • 2005
  • Main objective of this research is to evaluate performance of high-strength concrete (HSC) columns for ductility and strength. Eight one-third scale columns with compressive strength of 69 MPa were subjected to a constant axial load corresponding to 30 % of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement (${\rho}_s=1.58$, 2.25 %), tie configuration (Type H, Type C and Type D) and tie yield strength ($f_{yh}=549$ and 779 MPa). Test results show that the flexural strength of every column exceeds the calculated flexural capacity based on the equivalent concrete stress block used in the current design code. Columns with 42 % higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-02 showed ductile behaviour, showing a displacement ductility factor (${\mu}_{{\Delta}u}$) of 3.69 to 4.85, and a curvature ductility factor (${\mu}_{{\varphi}u}$) of over 10.0. With an axial load of 30 % of the axial load capacity, it is recommended that the yield strength of transverse reinforcement be held equal to or below 549 MPa.

Numerical study on RC flat plates subjected to combined axial and transverse load

  • Park, Honggun
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.137-150
    • /
    • 1999
  • This paper presents a numerical study on the flat plates in deep basements, subjected to floor load and in-plane compressive load due to soil and hydraulic lateral pressure. For nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities is developed. The validity of the numerical model is established by comparison with existing experiments performed on plates simply supported on four edges. The flat plates to be studied are designed according to the Direct Design Method in ACI 318-95. Through numerical study on the effects of different load combinations and loading sequence, the load condition that governs the strength of the flat plates is determined. For plates under the governing load condition, parametric studies are performed to investigate the strength variations with reinforcement ratio, aspect ratio, concrete strength, and slenderness ratio. Based on the numerical results, the floor load magnification factor is proposed.

Axial capacity of reactive powder concrete filled steel tube columns with two load conditions

  • Wang, Qiuwei;Shi, Qingxuan;Xu, Zhaodong;He, Hanxin
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 2019
  • Reactive powder concrete (RPC) is a type of ultra-high strength concrete that has a relatively high brittleness. However, its ductility can be improved by confinement, and the use of RPC in composite RPC filled steel tube columns has become an important subject of research in recent years. This paper aims to present an experimental study of axial capacity calculation of RPC filled circular steel tube columns. Twenty short columns under axial compression were tested and information on their failure patterns, deformation performance, confinement mechanism and load capacity were presented. The effects of load conditions, diameter-thickness ratio and compressive strength of RPC on the axial behavior were further discussed. The experimental results show that: (1) specimens display drum-shaped failure or shear failure respectively with different confinement coefficients, and the load capacity of most specimens increases after the peak load; (2) the steel tube only provides lateral confinement in the elastic-plastic stage for fully loaded specimens, while the confinement effect from steel tube initials at the set of loading for partially loaded specimens; (3) confinement increases the load capacity of specimens by 3% to 38%, and this increase is more pronounced as the confinement coefficient becomes larger; (4) the residual capacity-to-ultimate capacity ratio is larger than 0.75 for test specimens, thus identifying the composite columns have good ductility. The working mechanism and force model of the composite columns were analyzed, and based on the twin-shear unified strength theory, calculation methods of axial capacity for columns with two load conditions were established.

Analysis of free vibration of beam on elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Differential transform method (DTM) for free vibration analysis of both ends simply supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.