• Title/Summary/Keyword: axial column force

Search Result 243, Processing Time 0.023 seconds

Improvement of the earthquake resistance of R/C beam-column joints under the influence of P-△ effect and axial force variations using inclined bars

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.389-410
    • /
    • 2004
  • In this study, theoretical and experimental results are presented which were obtained during an investigation of the influence of the $P-{\Delta}$ effect that was caused by the simultaneous changing of the axial load P of the column and the lateral displacement ${\Delta}$ in the external beam-column joints. The increase or decrease of ${\Delta}$ was simultaneous with the increase or decrease of the axial compression load P and caused an additional influence on the aseismic mechanical properties of the joint. A total of 12 reinforced concrete exterior beam-column subassemblies were examined. A new model, which predicts the beam-column joint ultimate shear strength, was used in order to predict the seismic behaviour of beam-column joints subjected to earthquake-type loading plus variable axial load and $P-{\Delta}$ effect. Test data and analytical research demonstrated that axial load changes and $P-{\Delta}$ effect during an earthquake cause significant deterioration in the earthquake-resistance of these structural elements. It was demonstrated that inclined bars in the joint region were effective for reducing the unfavourable impact of the $P-{\Delta}$ effect and axial load changes in these structural elements.

Strength Evaluation of Steel Box Beam-to-Column Connections with Axial Load (축방향 하중을 받는 강재 상자단면 보-기둥 접합부의 강도평가)

  • Hwang, Won Sup;Park, Moon Su;Kim, Young Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.117-127
    • /
    • 2007
  • In this study, we evaluate the strength of steel box beam-to-column connections subjected to axial loads in steel frame piers. The T-connection strength was reduced due to the column axial force in the two-story pier structure. To examine this phenomenon, non-linear FEM analysis was carried out and the analytical procedure was verified by comparing it with experimental results. To clarify the effect of the axial force and major design parameters in connection with strength, influence of panel zone width-thickness ratio, sectional area, and axial force was investigated using FEM analysis. Also, the theoretical strength equations were suggested by stress distribution of panel zone. The strength of the T-connection was compared with one of the one-story pier structure connections. As a result, the strength evaluation equations are proposed in consideration of the panel zone width-thickness ratio and sectional area ratio for the T-connections.

An Experimental and Analytical Study on Axial Force-Moment Capacity of High-Strength Concrete Column under Eccentric Loads (편심을 받은 고강도 콘크리트 기둥의 출력-모멘트 강도에 관한 실험 및 해석적 연구)

  • 최창익;손혁수;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.468-474
    • /
    • 1997
  • High strength concrete is a more effective material for columns subject to axial force and moment than for other structural elements. The purpose of this study is to review strength calculation methods for high strength concrete columus by comparison of analytical values and experimental results. The variables of column test under eccentric loading were concrete compressive strength, longitudinal steel ratio, and eccentricity of load. The tied column sections of 120×120mm and 210×210mm were tested and the eccentricity of load varied in the range from 0.16 times to 0.54 times the column depth. The analytical results using the stress-strain relationship to 0.54 times the column depth. The analytical results using the stress-strain relationship as well as the ACI's rectangular block, Zia's modified block, and the trapezoidal block are compared with experimentally obtained data, and discussed in this paper.

  • PDF

Experiment Study on the Flexural-Axial Capacity of Steel-Concrete Composite Column composed of Non-Compact Section (비조밀단면을 가진 SC 합성 기둥의 휨-압축 내력에 관한 실험 연구)

  • Oh, Myoung Ho;Kim, Bum Rae;Kim, Myeong Han;Kim, Dae Joong;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.431-438
    • /
    • 2005
  • A steel-concrete composite column is a recently developed composite system in which the two opposite flanges of the H-shape section are connected by welded links, and the vacant space enclosed by the flanges, web, and links is filled with concrete. Previous experiments on the SC composite column were performed to evaluate its compression and bending and shear strengths, respectively, and they showed fairly good results. In addition to thesestudies, it may be necessary to evaluate the flexural-axial capacity of an SC composite column, because itscolumn members are generally subjected to axial force and bending moment at the same time. In this study, the bending strength of an SC composite column subjected to axial compression force was investigated experimentally. The results of the study showed that the AISC-LRFD provisions representedexcessively low values compared with those of the ACI, Eurocode-4, and Japan Code provisions. The Eurocode-4 provisions represented reasonable evaluations of the strength of the SC composite column composed of a non-compact section.

Effect of Anchorage on Strength of Precast R/C Beam-Column Joints

  • Kim, Kwangyeon
    • Architectural research
    • /
    • v.2 no.1
    • /
    • pp.55-60
    • /
    • 2000
  • Recently, there is a great demand for precast reinforced concrete (RC) construction methods on the purpose of simplicity in construction. Nishimatsu Construction Company has developed a construction method with precast reinforced concrete members in medium-rise building. In this construction method, how to joint precast members, especially the anchorage of the main bar of beam, is important problem. In this study, the structural performance of exterior joints with precast members was investigated. The parameters of the test specimens are anchorage type of the main bar of beam (U-shape anchorage or anchorage plate) and the ratio of the column axial force to the column strength. Specimens J-3 and J-4 used U-shape anchorage and the ratio of the column axial force of specimen J-4 was higher. On the other hand, specimens J-5 and J-6 used anchorage plate, and the anchorage lengths are 15d and 18d, respectively. Experimental results are summarized as follows; 1) For the joints with beam flexural failure mode, it was found that the maximum strength of specimen with anchorage plate is equal to or larger than that of specimen with conventional U-shaped anchorage if the anchorage length of more than 15d would be ensured, 2) Each specimen shows stable hysteretic curves and there were no notable effects on the hysteretic characteristics and the maximum strength caused by the anchorage method of beam main bar and the difference of column axial stress level.

  • PDF

An Experimental Study on the Bending Capacities of Steel-Concrete Column under the Axial Load (축력을 받는 SC 기둥의 휨 성능에 관한 실험 연구)

  • Lee, Hwan Soo;Oh, Myoung Ho;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.87-96
    • /
    • 2003
  • The Ssteel-Cconcrete (SC) Ccomposite Ccolumn is a new Ccomposite Ccolunin system, where hoops are welded between flanges of H-shapesd steel and concrete is filled in spaces between flanges are filled with con crete. Tests of SC composite columns were performed previously to determine their compression, bending and shear strength, and it showed good structural behavior. But sSince a column is usually subjected to an axial compression force, and bending it ihas needed to be bent forevaluate its structural behavior to be evaluated when its axial load and bending isaresimultaneously applied to the SC composite column. In this paper, tests were conducted to investigate the bending strength of SC composite columns subjected to axial compression force and bending moment. The parameters of the tests were concrete, a stud bolt, a hoop and a magnitude of axial compression. The test results showed that the maximum bending strength and ductility of an SC composite column were increased by 33-42% and 33-63%, respectively, comparinged to those of a bare steel column. Also, the results obtained bywith the Korean Limit State Design Code (LSD) presents a considerably safe side value compared to those of the Eurocode-4 and the Japan Code. However, wWhen the axial compression force is was increased, however, there awere considerable differences between the maximum strength obtained by the test and the LSD analysis. For this reason, it is recommended tothe use of the Eurocode-4 is recommended when calculates the strength of an SC composite column is being calculated, since the Eurocode-4 gives us a better estimation.

A Study on Development for Joint of Concrete Filled Steel Tube Column and P.C Reinforced Concrete Beam ( I ) The Investigation of Propriety for Model of Beam-to-Column Joint with Key Parameters, such as Section Type and Axial Force Ratio (콘크리트 충전강관 기둥과 PC 철근 콘크리트 보 접합부의 개발에 관한 연구( I ) -단면형상 및 축력비를 변수로 한 접합부 모델의 적합성 검토-)

  • Park, Jung Min;Kim, Wha Jung;Moon, Tae Sup;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.85-94
    • /
    • 1996
  • This paper investigated structural behaviors of joint of concrete filled steel tube column and P.C reinforced concrete beam through a series of hysteretic behavior experiment. The results are summarised as follows: (1) The joint stiffness of concrete filled square steel tube column and P.C reinforecd beam was higher than that of concrete filled circular steel tube column and P.C reinforecd beam, and it was decreased as the increase of the number of hysteretic cycle. (2) The aspects of the hysteretic behavior in the joint was stable as the increase of the number of hysteretic cycle, and rotation resisting capacity of joint of concrete filled square steel tube column and P.C reinforced concrete beam was higher than those of the concrete filled circular steel tube column and P.C reinforced concrete beam. (3) Some restriction must be put upon the ratio of axial force in this joint model because the load carrying capacity was decreased by flexural and flexural-torsional buckling in case of the ratio of axial force 0.6. (4) The emprical formula to predict the ultimate capacity of joint model to superimpose shearing strength of steel web(H section) and bending strength of reinforced concrete beam was expected.

  • PDF

Simplified analytical model for flexural response of external R.C. frames with smooth rebars

  • Campione, Giuseppe;Cannella, Francesco;Cavaleri, Liborio;Monaco, Alessia
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.531-542
    • /
    • 2018
  • In this paper an analytical model in a closed form able to reproduce the monotonic flexural response of external RC beam-column joints with smooth rebars is presented. The column is subjected to a constant vertical load and the beam to a monotonically increasing lateral force applied at the tip. The model is based on the flexural behavior of the beam and the column determined adopting a concentrated plasticity hinge model including slippage of the main reinforcing bars of the beam. A simplified bilinear moment-axial force domain is assumed to derive the ultimate moment associated with the design axial force. For the joint, a simple truss model is adopted to predict shear strength and panel distortion. Experimental data recently given in the literature referring to the load-deflection response of external RC joints with smooth rebars are utilized to validate the model, showing good agreement. Finally, the proposed model can be considered a useful instrument for preliminary static verification of existing external RC beam-column joints with smooth rebars for both strength and ductility verification.

Seismic Performance Evaluation of Reinforced Concrete Columns Under Constant and Varying Axial Forces (일정 및 변동 축력을 받는 철근콘크리트 기둥의 내진성능 평가)

  • Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • This paper describes the seismic performance evaluation of reinforced concrete bridge columns under constant and varying axial forces. For this purpose, nine identical circular reinforced concrete columns were designed seismically by KIBSE (2021) and KCI (2021). A comparison of lateral forces with theoretical strength shows that the safety factor for columns under varying axial forces is less marginal than those under constant axial forces. In addition, columns under varying axial forces exhibit significant fluctuations in the hysteretic response due to continuously varying axial forces. This is particularly prominent when many varying axial force cycles within a specific lateral loading cycle increase. Moreover, the displacement ductility of columns under varying axial forces does not meet the code-specified required ductility in the range of varying axial forces. All varying axial forces affect columns' strength, stiffness, and displacement ductility. Therefore, axial force variation needs to be considered in the lateral strength evaluation of reinforced concrete bridge columns.

Failure Mode of Structural Components Considering Column Axial Forces and Partial Masonry Infills for School Buildings Constructed in the 1980s (기둥 축력과 조적허리벽을 고려한 1980년대 학교교사 구조요소의 파괴모드 평가)

  • Jeong, Su-Hyeon;Choi, Myeong-Ho;Lee, Chang-Hwan
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.57-64
    • /
    • 2022
  • As earthquakes have increased in Korea recently, people are paying attention to the seismic performance of buildings built in the past. Many school buildings in Korea were built based on standard drawings before the seismic design was applied. However, since school buildings are often designated as emergency evacuation facilities in case of disasters such as earthquakes, seismic evaluation and retrofit must be done quickly. This study investigated the failure modes among structural components (beams, columns, and joints), focusing on 1980s standard drawings for school buildings. The effects of column axial force, partial masonry infills, and different material strengths for concrete and rebar were considered for detailed evaluation. As a result, most of the joints were found to be the weakest among structural components. Column axial forces tended to make the joints more vulnerable, and partial masonry infills increased the possibility of joint failure and shear failure in columns.