• Title/Summary/Keyword: avoidance-based

Search Result 1,037, Processing Time 0.028 seconds

A Study on Intention Exchange-based Ship Collision Avoidance by Changing the Safety Domain

  • Kim, Donggyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.259-268
    • /
    • 2019
  • Even if only two ships are encountered, a collision may occur due to the mistaken judgment of the positional relationship. In other words, if an officer does not know a target ship's intention, there is always a risk of collision. In this paper, the experiments are conducted to investigate how the intention affects the action of collision avoidance in cooperative and non-cooperative situations. In non-cooperative situation, each ship chooses a course that minimizes costs based on the current situation. That is, it always performs a selfish selection. In a cooperative situation, the information is exchanged with a target ship and a course is selected based on this information. Each ship uses the Distributed Stochastic Search Algorithm so that a next-intended course can be selected by a certain probability and determines the course. In the experimental method, four virtual ships are set up to analyze the action of collision avoidance. Then, using the actual AIS data of eight ships in the strait of Dover, I compared and analyzed the action of collision avoidance in cooperative and non-cooperative situations. As a result of the experiment, the ships showed smooth trajectories in the cooperative situation, but the ship in the non-cooperative situation made frequent big changes to avoid a collision. In the case of the experiment using four ships, there was no collision in the cooperative situation regardless of the size of the safety domain, but a collision occurred between the ships when the size of the safety domain increased in cases of non-cooperation. In the case of experiments using eight ships, it was found that there are optimal parameters for collision avoidance. Also, it was possible to grasp the variation of the sailing distance and the costs according to the combination of the parameters, and it was confirmed that the setting of the parameters can have a great influence on collision avoidance among ships.

Internet Fashion Advertising Avoidance: Internet Advertising Attributes (인터넷 패션 광고 회피에 관한 연구: 인터넷광고속성을 중심으로)

  • Cho, Se-Na;Lee, Seung-Hee
    • Journal of the Korean Home Economics Association
    • /
    • v.47 no.9
    • /
    • pp.83-90
    • /
    • 2009
  • The purpose of this study was to investigate advertising avoidance of the Internet fashion advertising. Three hundred and thirty college students living in Seoul and its suburb participated in this study. For data analysis, descriptive statistics, reliability, and Structure Equation Modeling were used. The results were as follows. First, an ‘informativeness’ and ‘entertainment’ of advertisement affected negatively on fashion advertising avoidance. Second, ‘the perceived intrusiveness’ of advertisement did not affect significantly on fashion advertising avoidance. Third, ‘the clutter’ of advertisement did affect positively on advertising avoidance. Based on these results, this study would provide Internet fashion marketers more efficient Internet fashion advertising strategies.

A New Analytical Representation to Robot Path Generation with Collision Avoidance through the Use of the Collision Map

  • Park Seung-Hwan;Lee Beom-Hee
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.77-86
    • /
    • 2006
  • A new method in robot path generation is presented using an analysis of the characteristics of multi-robot collision avoidance. The research is based on the concept of the collision map, where the collision between two robots is presented by a collision region and a crossing curve TLVSTC (traveled length versus servo time curve). Analytic collision avoidance is considered by translating the collision region in the collision map. The 4 different translations of collision regions correspond to the 4 parallel movements of the actual original robot path in the real world. This analysis is applied to path modifications where the analysis of collision characteristics is crucial and the resultant path for collision avoidance is generated. Also, the correlations between the translations of the collision region and robot paths are clarified by analyzing the collision/non-collision areas. The influence of the changes of robot velocity is investigated analytically in view of collision avoidance as an example.

Autonomous Navigation of an Underwater Robot in the Presence of Multiple Moving Obstacles

  • Kwon, Kyoung-Youb;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.2
    • /
    • pp.124-130
    • /
    • 2005
  • Obstacle avoidance of underwater robots based on a modified virtual force field algorithm is proposed in this paper. The VFF(Virtual Force Field) algorithm, which is widely used in the field of mobile robots, is modified for application to the obstacle avoidance of underwater robots. This Modified Virtual Force Field(MVFF) algorithm using the fuzzy lgoc can be used in moving obstacles avoidance. A fuzzy algorithm is devised to handle various situations which can be faced during autonomous navigation of underwater robots. The proposed obstacle avoidance algorithm has ability to handle multiple moving obstacles. Results of simulation show that the proposed algorithm can be efficiently applied to obstacle avoidance of the underwater robots.

Obstacle Avoidance System Using a Single Camera and LMNN Fuzzy Controller (단일 영상과 LM 신경망 퍼지제어기를 적용한 장애물 회피 시스템)

  • Yoo, Sung-Goo;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.192-197
    • /
    • 2009
  • In this paper, we proposed the obstacle avoidance system using a single camera image and LM(Levenberg-Marquart) neural network fuzzy controller. According to a robot technology adapt to various fields of industry and public, the robot has to move using self-navigation and obstacle avoidance algorithms. When the robot moves to target point, obstacle avoidance is must-have technology. So in this paper, we present the algorithm that avoidance method based on fuzzy controller by sensing data and image information from a camera and using the LM neural network to minimize the moving error. And then to verify the system performance of the simulation test.

Effects of Emoji Approach-Avoidance Visual Experience on Valence Ratings via Mobile Interface

  • Eojin Kim;Dahua Li;Soojin Jun
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.180-189
    • /
    • 2024
  • We aimed to see if approach-avoidance visual experience would have different effects in the valence rating of emojis. Previous literature has shown that approach-avoidance tendencies have influences people's emotional perceptions. Up until now, research on emojis have been heavily focused on static emojis, which gives room for exploration whether if movement added on to emoji would elicit different emotional responses. In the study, we examined the impact of approach-avoidance visual experience of emojis via mobile interface, categorized into 4 experimental conditions (positive approach, negative approach, positive avoid, and negative avoid), and conducted semi-structured interviews to identify users' reasonings towards their valence ratings on specific emojis with approach or avoid movements. We found that positive approach emojis were the highest valence rating and preferred by the participants, while there were no differences between negative emoji approach or avoidance. Based on these findings, we conclude that positive emojis could be intensified to be more positive with approach motion, yet for negative emojis, individual differences or contextual differences may arise in its emotional ratings.

A Cache Consistency Algorithm for Client Caching Data Management Systems (클라이언트 캐슁 데이터 관리 시스템을 위한 캐쉬 일관성 알고리즘)

  • Kim Chi-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.1043-1046
    • /
    • 2006
  • Cached data management of clients is required to guarantee the correctness of client's applications. There are two categories of cache consistency algorithms : detection-based and avoidance-based cache consistency algorithm. Detection?.based schemes allow stale data access and then check the validity of any cached data before they ran be allowed to commit. In contrast, under avoidance-based algorithms, transactions never have the opportunity to access stale data. In this paper, we propose a new avoidance-based cache consistency algorithm make use of version. The proposed method maintains the two versions at clients and servers, so it has no callback message and it can be reduced abort ratio of transactions compare with the single-versioned algorithms. In addition to, the proposed method can be decreased cache miss using by mixed invalidation and propagation for remote update action.

  • PDF

K-Means Clustering Algorithm and CPA based Collinear Multiple Static Obstacle Collision Avoidance for UAVs (K-평균 군집화 알고리즘 및 최근접점 기반 무인항공기용 공선상의 다중 정적 장애물 충돌 회피)

  • Hyeji Kim;Hyeok Kang;Seongbong Lee;Hyeongseok Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.427-433
    • /
    • 2022
  • Obstacle detection, collision recognition, and avoidance technologies are required the collision avoidance technology for UAVs. In this paper, considering collinear multiple static obstacle, we propose an obstacle detection algorithm using LiDAR and a collision recognition and avoidance algorithm based on CPA. Preprocessing is performed to remove the ground from the LiDAR measurement data before obstacle detection. And we detect and classify obstacles in the preprocessed data using the K-means clustering algorithm. Also, we estimate the absolute positions of detected obstacles using relative navigation and correct the estimated positions using a low-pass filter. For collision avoidance with the detected multiple static obstacle, we use a collision recognition and avoidance algorithm based on CPA. Information of obstacles to be avoided is updated using distance between each obstacle, and collision recognition and avoidance are performed through the updated obstacles information. Finally, through obstacle location estimation, collision recognition, and collision avoidance result analysis in the Gazebo simulation environment, we verified that collision avoidance is performed successfully.

Real-time obstacle avoidance for redundant manipulator (여유 자유도 로봇의 실시간 충돌 회피)

  • 조웅장;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1140-1143
    • /
    • 1996
  • A new approach based on artificial potential function is proposed for the obstacle avoidance of redundant manipulators. Unlike the so-called "global" path planning method, which requires expensive computation for the path search before the manipulator starts to move, this new approach, "local" path planning, researches the path in real-time using the local distance information. Previous use of artificial potential function has exhibited local minima in some complex environments. This thesis proposes a potential function that has no local minima even for a cluttered environment. This potential function has been implemented for the collision avoidance of a redundant robot in Simulation. The simulation also employ an algorithm that eliminates collisions with obstacles by calculating the repulsive potential exerted on links, based on the shortest distance to object.

  • PDF

Analytical Design of the Space Debris Collision Avoidance Maneuver based on Relative Dynamics (상대운동방정식 기반의 우주파편 충돌회피기동의 해석적 설계기법)

  • Cho, Dong-Hyun;Kim, Hae-Dong;Lee, Sang-Cherl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1048-1052
    • /
    • 2013
  • Recently, many countries have attempted to protect their satellites from damage caused by space debris. To design these collision avoidance maneuvers, optimal algorithms based on numerical simulations are widely used due to their practicality. However, these algorithms often require a great expenditure of time in order to find solutions. Therefore, in this paper, a simple analytical strategy is suggested to find the initial prediction required to find these numerical solutions for collision avoidance maneuvers by using relative dynamics for the rendezvous and docking problems. For this analytical strategy, the simple dynamics on the CW (Clohessy-Wiltshire) frame is adopted as an attempt to introduce an analytical solution.