• Title/Summary/Keyword: avian influenza virus

Search Result 123, Processing Time 0.031 seconds

Screening of Antiviral Medicinal Plants against Avian Influenza Virus H1N1 for Food Safety

  • Lee, Jang-Hyun;Van, Nguyen Dinh; Ma, Jin-Yeul;Kim, Young-Bong;Kim, Soo-Ki;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.345-350
    • /
    • 2010
  • Various extracts from 30 medicinal plants were evaluated for their antiviral activity against influenza virus A/Puerto Rico/8/34 (H1N1) and cytotoxicity in MDCK cell culture. The plant material (30 g) was extracted with methanol (300 mL) at room temperature for 24 h, after which the methanolic extracts were filtered, evaporated, and subsequently lyophilized. Evaluation of the potential antiviral activity was conducted by a viral replication inhibition test. Among these medicinal plants, Tussilago farfara, Brassica juncea, Prunus armeniaca, Astragalus membranaceus, Patrinia villosa, and Citrus unshiu showed marked antiviral activity against influenza virus A/H1N1 at concentrations ranging from 0.15625 mg/mL to 1.25 mg/mL, 0.3125 mg/mL to 10 mg/mL, 5 mg/mL to 10 mg/mL, 0.625 mg/mL to 10 mg/mL, 0.625 mg/mL to 10 mg/mL, and 0.3125 mg/mL to 5 mg/mL, respectively. The extracts of Tussilago farfara showed cytotoxicity at concentrations greater than 2.5 mg/mL, whereas the other five main extracts showed no cytotoxicity at concentrations of 10 mg/mL. Taken together, the present results indicated that methanolic extracts of the six main plants might be useful for the treatment of influenza virus H1N1.

Surveillance and molecular epidemiology of avian influenza viruses from birds in zoos, backyard flocks and live bird markets in Korea

  • Jang, Jin-Wook;Kim, Il-Hwan;Kwon, Hyuk-Joon;Hong, Seung-Min;Kim, Jae-Hong
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.4
    • /
    • pp.239-252
    • /
    • 2012
  • The circulation and infection of avian influenza virus (AIV) in zoos and backyard flocks has not been systematically investigated. In the present study, we surveyed the birds including those in live bird markets (LBMs) and evaluated co-circulation of AIVs among them. Overall, 26 H9N2 AIVs and one H6N2 AIV were isolated from backyard flocks and LBMs, but no AIVs were isolated from zoo birds. Genetic analysis of the HA and NA genes indicated that most of the H9N2 AIVs showed higher similarities to AIVs circulating in domestic poultry than to those in wild birds, while the H6N2 AIV isolate from an LBM did to AIVs circulating in migratory wild birds. In serological tests, 15% (391/2619) of the collected sera tested positive for AIVs by competitive-ELISA. Among them, 34% (131/391) of the sera tested positive for AIV H9 antigen by HI test, but only one zoo sample was H9 positive. Although AIVs were not isolated from zoo birds, the serological results indicated that infection of AIVs might occur in zoos. It was also confirmed that H9N2 AIVs continue to circulate and evolve between backyard flocks and LBMs. Therefore, continuous surveillance and monitoring of these flocks should be conducted to control further epidemics.

Genetic Characterization of H7-subtype Avian Influenza Viruses (H7 아형 조류인플루엔자 바이러스의 유전자 특성)

  • Yeo, Jiin;Kwon, Hyuk-Moo;Sung, Haan-Woo
    • Korean Journal of Poultry Science
    • /
    • v.46 no.3
    • /
    • pp.173-183
    • /
    • 2019
  • Based on their virulence, the avian influenza viruses (AIVs) are classified into two pathotypes: low pathogenic avian influenza (LPAI) virus and highly pathogenic avian influenza (HPAI) virus. Among the 16 HA subtypes of AIV, only the H5 and H7 subtypes are classified as HPAI. Some AIVs, including H5 and H7 viruses, can infect humans directly. Six H7 subtype isolates from wild birds of the H7N7 (n=4) and H7N1 (n=2) subtypes were characterized in this study. Phylogenetic analysis showed that eight viral genes (HA, NA, PB2, PB1, PA, NP, M, and NS) of the H7 isolates clustered in the Eurasian lineage, the genetic diversity of which is indicated by its division into several sublineages. The Korean H7 isolates had two motifs, PEIPKGR and PELPKGR, at the HA cleavage site, which have been associated with LPAI viruses. Six H7 isolates encoded glutamine (Q) and glycine (G) at positions 226 (H3 numbering) and 228 of HA, suggesting avian-type receptor-binding specificity. None of the Korean H7 isolates had the amino acid substitutions E627K in PB2 and I368V in PB1, which are critical for efficient replication in human cells. The Korean H7 isolates showed no deletions in the NA stalk region and in NS. These results suggest that the Korean H7 isolates from wild birds are different from the H7N9 influenza viruses isolated in China in 2013, which are capable of infecting humans.

Influenza Associated Pneumonia (인플루엔자 연관 폐렴)

  • Kim, Jae-Yeol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.4
    • /
    • pp.285-292
    • /
    • 2011
  • After an outbreak of H1N1 influenza A virus infection in Mexico in late March 2009, the World Health Organization raised its pandemic alert level to phase 6, and to the highest level in June 2009. The pandemic H1N1/A influenza was caused by an H1N1 influenza A virus that represents a quadruple reassortment of two swine strains, one human strain, and one avian strain of influenza. After the first case report of H1N1/A infection in early May 2009, South Korea was overwhelmed by this new kind of influenza H1N1/A pandemic, which resulted in a total of 700,000 formally reported cases and 252 deaths. In this article, clinical characteristics of victims of H1N1/A influenza infection, especially those who developed pneumonia and those who were cared for in the intensive care unit, are described. In addition, guidelines for the treatment of H1N1/A influenza virus infection victims in the ICU, which was suggested by the Korean Society of Critical Care Medicine, are introduced.

Generating GAN-based Virtual data to Prevent the Spread of Highly Pathogenic Avian Influenza(HPAI) (고위험성 조류인플루엔자(HPAI) 확산 방지를 위한 GAN 기반 가상 데이터 생성)

  • Choi, Dae-Woo;Han, Ye-Ji;Song, Yu-Han;Kang, Tae-Hun;Lee, Won-Been
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • This study was conducted with the support of the Information and Communication Technology Promotion Center, funded by the government (Ministry of Science and ICT) in 2019. Highly pathogenic avian influenza (HPAI) is an acute infectious disease of birds caused by highly pathogenic avian influenza virus infection, causing serious damage to poultry such as chickens and ducks. High pathogenic avian influenza (HPAI) is caused by focusing on winter rather than year-round, and sometimes does not occur at all during a certain period of time. Due to these characteristics of HPAI, there is a problem that does not accumulate enough actual data. In this paper study, GAN network was utilized to generate actual similar data containing missing values and the process is introduced. The results of this study can be used to measure risk by generating realistic simulation data for certain times when HPAI did not occur.

MicroRNA expression profiling in the lungs of genetically different Ri chicken lines against the highly pathogenic avian influenza H5N1 virus

  • Sooyeon Lee;Suyeon Kang;Jubi Heo;Yeojin Hong;Thi Hao Vu;Anh Duc Truong;Hyun S Lillehoj;Yeong Ho Hong
    • Journal of Animal Science and Technology
    • /
    • v.65 no.4
    • /
    • pp.838-855
    • /
    • 2023
  • The highly pathogenic avian influenza (HPAI) virus triggers infectious diseases, resulting in pulmonary damage and high mortality in domestic poultry worldwide. This study aimed to analyze miRNA expression profiles after infection with the HPAI H5N1 virus in resistant and susceptible lines of Ri chickens.For this purpose, resistant and susceptible lines of Vietnamese Ri chicken were used based on the A/G allele of Mx and BF2 genes. These genes are responsible for innate antiviral activity and were selected to determine differentially expressed (DE) miRNAs in HPAI-infected chicken lines using small RNA sequencing. A total of 44 miRNAs were DE after 3 days of infection with the H5N1 virus. Computational program analysis indicated the candidate target genes for DE miRNAs to possess significant functions related to cytokines, chemokines, MAPK signaling pathway, ErBb signaling pathway, and Wnt signaling pathway. Several DE miRNA-mRNA matches were suggested to play crucial roles in mediating immune functions against viral evasion. These results revealed the potential regulatory roles of miRNAs in the immune response of the two Ri chicken lines against HPAI H5N1 virus infection in the lungs.

Cytokine-cytokine receptor interactions in the highly pathogenic avian influenza H5N1 virus-infected lungs of genetically disparate Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Jiae;Lee, Sooyeon;Song, Ki-Duk;Cha, Jihye;Dang, Hoang Vu;Tran, Ha Thi Thanh;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.367-376
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry as well as the economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for HPAIV resistance. Therefore, in this study, we investigated gene expression related to cytokine-cytokine receptor interactions by comparing resistant and susceptible Ri chicken lines for avian influenza virus infection. Methods: Ri chickens of resistant (Mx/A; BF2/B21) and susceptible (Mx/G; BF2/B13) lines were selected by genotyping the Mx dynamin like GTPase (Mx) and major histocompatibility complex class I antigen BF2 genes. These chickens were then infected with influenza A virus subtype H5N1, and their lung tissues were collected for RNA sequencing. Results: In total, 972 differentially expressed genes (DEGs) were observed between resistant and susceptible Ri chickens, according to the gene ontology and Kyoto encyclopedia of genes and genomes pathways. In particular, DEGs associated with cytokine-cytokine receptor interactions were most abundant. The expression levels of cytokines (interleukin-1β [IL-1β], IL-6, IL-8, and IL-18), chemokines (C-C Motif chemokine ligand 4 [CCL4] and CCL17), interferons (IFN-γ), and IFN-stimulated genes (Mx1, CCL19, 2'-5'-oligoadenylate synthase-like, and protein kinase R) were higher in H5N1-resistant chickens than in H5N1-susceptible chickens. Conclusion: Resistant chickens show stronger immune responses and antiviral activity (cytokines, chemokines, and IFN-stimulated genes) than those of susceptible chickens against HPAIV infection.

Impact of inland waters on highly pathogenic avian influenza outbreaks in neighboring poultry farms in South Korea

  • Ahmad, Saleem;Koh, Kyeyoung;Yoo, Daesung;Suh, Gukhyun;Lee, Jaeil;Lee, Chang-Min
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.36.1-36.14
    • /
    • 2022
  • Background: Since 2003, the H5 highly pathogenic avian influenza (HPAI) subtype has caused massive economic losses in the poultry industry in South Korea. The role of inland water bodies in avian influenza (AI) outbreaks has not been investigated. Identifying water bodies that facilitate risk pathways leading to the incursion of the HPAI virus (HPAIV) into poultry farms is essential for implementing specific precautionary measures to prevent viral transmission. Objectives: This matched case-control study (1:4) examined whether inland waters were associated with a higher risk of AI outbreaks in the neighboring poultry farms. Methods: Rivers, irrigation canals, lakes, and ponds were considered inland water bodies. The cases and controls were chosen based on the matching criteria. The nearest possible farms located within a radius of 3 km of the case farms were chosen as the control farms. The poultry farms were selected randomly, and two HPAI epidemics (H5N8 [2014-2016] and H5N6 [2016-2017]) were studied. Conditional logistic regression analysis was applied. Results: Statistical analysis revealed that inland waters near poultry farms were significant risk factors for AI outbreaks. The study speculated that freely wandering wild waterfowl and small animals contaminate areas surrounding poultry farms. Conclusions: Pet birds and animals raised alongside poultry birds on farm premises may wander easily to nearby waters, potentially increasing the risk of AI infection in poultry farms. Mechanical transmission of the AI virus occurs when poultry farm workers or visitors come into contact with infected water bodies or their surroundings. To prevent AI outbreaks in the future, poultry farms should adopt strict precautions to avoid contact with nearby water bodies and their surroundings.

Avian influenza virus surveillance in wild bird in South Korea from 2019 to 2022

  • Eun-Jee, Na;Su-Beom, Chae;Jun-Soo, Park;Yoon-Ji, Kim;Young-Sik, Kim;Jae-Ku, Oem
    • Korean Journal of Veterinary Service
    • /
    • v.45 no.4
    • /
    • pp.285-292
    • /
    • 2022
  • Avian influenza viruses (AIVs) cause contagious diseases and have the potential to infect not only birds but also mammals. Wild birds are the natural reservoir of AIVs and spread them worldwide while migrating. Here we collected active AIV surveillance data from wild bird habitats during the 2019 to 2022 winter seasons (from September to March of the following year) in South Korea. We isolated 97 AIVs from a total of 7,590 fecal samples and found the yearly prevalence of AIVs was 0.83, 1.48, and 1.27, respectively. The prevalence of AIVs were generally higher from September to November. These findings demonstrate that a high number of wild birds that carry AIVs migrate into South Korea during the autumn season. The highest virus numbers were isolated from the species Anas platyrhynchos (72%; n=70), followed by Anas poecilorhyncha (15.4%; n=15), suggesting that each is an important host for these pathogens. Twenty-five hemagglutinin-neuraminidase subtypes were isolated, and all AIVs except the H5N8 subtype were found to be low-pathogenic avian influenza viruses (LPAIVs). Active surveillance of AIVs in wild birds could benefit public health because it could help to estimate their risk for introduction into animals and humans. Moreover, considering that 132 cases of human AIV infections have been reported worldwide within the last 5 years, active surveillance of AIVs is necessary to avoid outbreaks.

Genetic Analysis of the 2019 Swine H1N2 Influenza Virus Isolated in Korean Pigs and Its Infectivity in Mice (2019년 국내에서 분리한 H1N2 돼지 인플루엔자바이러스 유전자 분석 및 이의 마우스에 대한 감염성)

  • Jang, Yunyueng;Seo, Sang Heui
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.749-762
    • /
    • 2020
  • Influenza A viruses are circulating in a variety of hosts, including humans, pigs, and poultry. Swine influenza virus is a zoonotic pathogen that can be readily transmitted to humans. The influenza viruses of the 2009 H1N1 pandemic were derived from swine influenza viruses, and it has been suggested that the 1957 H2N2 pandemic and the 1968 H3N2 pandemic both originated in pigs. Pigs are regarded as a mixing vessel in the creation of novel influenza viruses since they are readily infected with human and avian influenza viruses. We isolated three novel H1N2 influenza viruses from pigs showing respiratory symptoms on a Korean farm in 2019. These viruses were reassortants, containing PA and NP genes from those of the 2009 H1N1 influenza virus in addition to PB2, PB1, HA, NA, M, and NS genes from those of triple-reassortant swine H3N2 and classical swine H1N2 influenza viruses circulating in Korean pigs. Mice infected with the isolated H1N2 influenza virus lost up to 17% body weight and exhibited interstitial pneumonia involving infiltration of many inflammatory cells. Results suggest that close surveillance to detect emerging influenza viruses in pigs is necessary for the health of both pigs and humans.