• 제목/요약/키워드: averaged flat

Search Result 76, Processing Time 0.026 seconds

Concave Surface Boundary Layer Flows in the Presence of Streamwise Vortices

  • Winoto, Sonny H.;Tandiono, Tandiono;Shah, Dilip A.;Mitsudharmadi, Hatsari
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.33-46
    • /
    • 2011
  • Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress increases well beyond the flat plate boundary layer values. By pre-setting much larger or much smaller vortex wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur.

NUMERICAL SIMULATIONS OF SUPERSONIC FLOWS USING POROUS AND ROUGH WALL BOUNDARY CONDITIONS (다공성 벽면(porous-wall)과 거칠기가 있는 벽면(rough-wall)에 관한 경계조건을 이용한 초음속 흐름의 수치모사)

  • Kwak, E.K.;Yoo, I.Y.;Lee, D.H.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.23-30
    • /
    • 2009
  • The existing code which solves two-dimensional RANS(Reynolds Averaged Navier-Stokes) equations and 2-equation turbulence model equations was modified to enable numerical simulation of various supersonic flows. For this, various boundary conditions have been implemented to the code. Bleed boundary condition was incorporated into the code for calculating wall mean flow quantities. Furthermore, boundary conditions for the turbulence quantities along rough surfaces as well as porous walls were applied to the code. The code was verified and validated by comparing the computational results against the experimental data for the supersonic flows over bleed region on a flat plate. Furthermore, numerical simulations for supersonic shock boundary layer interaction with a bleed region were performed and their results were compared with the existing computational results.

Large Eddy Simulation of Shock-Boundary Layer Interaction

  • Teramoto, Susumu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.426-432
    • /
    • 2004
  • Large-Eddy Simulation (LES) is applied for the simulation of compressible flat plate boundary with Reynolds number up to 5 X 10$^{5}$ . Numerical examples include shock/boundary layer interaction and boundary layer transition, aiming future application to the analysis of transonic fan/compressor cascades. The present LES code uses hybrid com-pact/WENO scheme for the spatial discretization and compact diagonalized implicit scheme for the time integration. The present code successfully predicted the bypass transition of subsonic boundary layer. As for supersonic turbulent boundary layer, mean and fluctuation velocity of the attached boundary, as well as the evolution of the friction coefficient and the displacement thickness both upstream and downstream of the separation region are all in good agreement with experiment. The separation point also agreed with the experiment. In the simulation of the shock/laminar boundary layer interaction, the dependence of the transition upon the shock strength is reproduced qualitatively, but the extent of the separation region is overpredicted. These numerical examples show that LES can predict the behavior of boundary layer including transition and shock interaction, which are hardly managed by the conventional Reynolds-averaged Navier-Stokes approach, although there needs to be more effort before achieving quantitative agreement.

  • PDF

Effects of Stiffeners on Vibro-acoustic Response of Rectangular Flat Plate (보강재가 평판 진동 및 음향 특성에 미치는 영향)

  • Park, Jeong-Won;Kim, Dong-Kyu;Koo, Man-Hoi;Park, Jun-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.622-628
    • /
    • 2011
  • The purpose of this study was to analyze the vibro-acoustic characteristics of a stiffened rectangular plate at high frequencies. The stiffeners attached along the plate surface were assumed to have rotational and translational stiffness and inertia. The harmonic response of the stiffened plate were predicted and compared using the Rayleigh-Ritz method with two different trial functions - polynomial and beam functions. The variation of the spatially averaged mean square velocity and the modal characteristics with the number of stiffeners were obtained. The use of the beam function ensured fast convergence which was essential for analyzing the high frequency vibration responses. Using the calculated modal characteristics and the Rayleigh-integral, the radiated sound power was predicted, and the effects of stiffeners were investigated. The proposed model can be applied to study optimal layout of stiffeners for minimal noise generation of the stiffened structures.

An investigation on heat transfer effects of two dimensional plane jet attaching offseted obliqued wall (단이 진 경사벽면에 부착되는 2차원 평면제트의 열전달 효과에 관한 연구)

  • Yun, Sun-Hyeon;Lee, Dae-Hui;Sim, Jae-Gyeong;Song, Heung-Bok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1314-1325
    • /
    • 1997
  • Experiments have been conducted to determine the flow and heat transfer characteristics for a two-dimensional turbulent wall attaching offset jet at different oblique angles to a flat surface. The distributions of the wall static pressure coefficient and time-averaged reattachment position for various offset ratios and oblique angles have been measured. The local Nusselt number distributions on the plate surface were also measured using liquid crystal as a temperature indicator. The new hue-capturing technique utilizing a true color image processing system was used to accurately determine the temperature of the liquid crystal. The experiments were carried out at Reynolds number, Re (based on D) of from 7300 to 21,300 with offset ratio, H/D from 2.5 to 10, and oblique angle, .alpha. from 0 deg. to 400 deg..

Control of the flow past a sphere in a turbulent boundary layer using O-ring

  • Okbaz, Abdulkerim;Ozgoren, Muammer;Canpolat, Cetin;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • This research work presents an experimental study's outcomes to reveal the impact of an O-ring on the flow control over a sphere placed in a turbulent boundary layer. The investigation is performed quantitatively and qualitatively using particle image velocimetry (PIV) and dye visualization. The sphere model having a diamater of 42.5 mm is located in a turbulent boundary layer flow over a smooth plate for gap ratios of 0≤G/D≤1.5 at Reynolds number of 5 × 103. Flow characteristics, including patterns of instantaneous vorticity, streaklines, time-averaged streamlines, velocity vectors, velocity fluctuations, Reynolds stress correlations, and turbulence kinetic energy (), are compared and discussed for a naked sphere and spheres having O-rings. The boundary layer velocity gradient and proximity of the sphere to the flat plate profoundly influence the flow dynamics. At proximity ratios of G/D=0.1 and 0.25, a wall jet is formed between lower side of the sphere and flat plate, and velocity fluctuations increase in regions close to the wall. At G/D=0.25, the jet flow also induces local flow separations on the flat plate. At higher proximity ratios, the velocity gradient of the boundary layer causes asymmetries in the mean flow characteristics and turbulence values in the wake region. It is observed that the O-ring with various placement angles (𝜃) on the sphere has a considerable alteration in the flow structure and turbulence statistics on the wake. At lower placement angles, where the O-ring is closer to the forward stagnation point of the sphere, the flow control performance of the O-ring is limited; however, its impact on the flow separation becomes pronounced as it is moved away from the forward stagnation point. At G/D=1.50 for O-ring diameters of 4.7 (2 mm) and 7 (3 mm) percent of the sphere diameter, the -ring exhibits remarkable flow control at 𝜃=50° and 𝜃=55° before laminar flow separation occurrence on the sphere surface, respectively. This conclusion is yielded from narrowed wakes and reductions in turbulence statistics compared to the naked sphere model. The O-ring with a diameter of 3 mm and placement angle of 50° exhibits the most effective flow control. It decreases, in sequence, streamwise velocity fluctuations and length of wake recovery region by 45% and 40%, respectively, which can be evaluated as source of decrement in drag force.

Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea (서해안 곰소만 갯벌 온도의 구조 및 변화)

  • Lee, Sang-Ho;Cho, Yang-Ki;You, Kwang-Woo;Kim, Young-Gon;Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.100-112
    • /
    • 2005
  • Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.

A numerical simulation of propagating turbidity currents using the ULTIMATE scheme (ULTIMATE 기법을 이용한 부유사 밀도류 전파 수치모의)

  • Choi, Seongwook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • This study presents a numerical model for simulating turbidity currents using the ULTIMATE scheme. For this, the layer-averaged model is used. The model is applied to laboratory experiments, where the flume is composed of sloping and flat parts, and the characteristics of propagating turbidity currents are investigated. Due to the universal limiter of the ULTIMATE scheme, the frontal part of the turbidity currents at a sharp gradient without numerical oscillations is computed. Simulated turbidity currents propagate super-critically to the end of the flume, and internal hydraulic jumps occur at the break-in-slope after being affected by the downstream boundary. It is found that the hydraulic jumps are computed without numerical oscillations if Courant number is less than 1. In addition, factors that affect propagation velocity of turbidity currents is studied. The particle size less than $9{\mu}m$ does not affect propagation velocity but the buoyancy flux affects clearly. Finally, it is found that the numerical model computes the bed elevation change due to turbidity currents properly. Specifically, a discontinuity in the bed elevation, arisen from the hydraulic jumps and resulting difference in sediment entrainment, is observed.

Air Fluid Analysis between Porous PE-Plate and Glass in Air-Floating FPD Conveyor System (공기부상 FPD 이송장치에서 다공질판과 글래스 사이의 공기유동 해석)

  • Lho, Tae-Jung;Shon, Tae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.878-885
    • /
    • 2008
  • The FPDs(Flat Panel Displays) such as LCD(Liquid Crystal Display) and PDP(Plasma Display Panel) and OLED(Organic Light Emitting Diode), recently, have been substituted for CRT(Cathode Ray Tube) displays because they have a convex surface, small volume, light weight and lower electric power consumption. The productivity of FPDs is greatly dependent on the area of thin glass panel with 0.6 - 0.8mm thickness because FPDs are manufactured by cutting a large-scaled thin glass panel with patterns to the required product dimensions. So FPD's industries are trying to increase the area of thin glass panel. For example, the thin glass panel size of the 8th generation is 2,200mm in width, 2,600mm in length and 0.7mm in thickness. The air flows both in the thin glass panel and in the porous PE-plate surface were modeled and analyzed, from which a working condition was estimated. The thin glass panel on the porous PE-plate surface with self-lubricating characteristics was investigated and compared with that on the square duct floating bar surface with many holes of 1mm diameter when the thin glass panel contacts the floating bar surface due to malfunction of electric power supply.

Self-excited Variability of the East Korea Warm Current: A Quasi-Geostyophic Model Study

  • Lee, Sang-Ki
    • Journal of the korean society of oceanography
    • /
    • v.34 no.1
    • /
    • pp.1-21
    • /
    • 1999
  • A two-layer quasi-geostrophic numerical model is used to investigate the temporal variability of the East Korea Warm Current (EKWC), especially the separation from the Korean coast and the generation of warm eddies. An attention is given on the active role of the nonlinear boundary layer process. For this, an idealized flat bottom model of the East Sea is forced with the annual mean wind curl and with the inflow-outflow specified at the Korea (Tsushima) and Tsugaru Straits. Two types of separation mechanisms are identified. The first one is influenced by the westward movement of the recirculating leg of the EKWC (externally driven separation),the second one is solely driven by the boundary layer dynamics (internally driven separation). However, these two processes are not independent, and usually coexist. It is hypothesized that 'internally driven separation' arises as the result of relative vorticity production at the wall, its subsequent advection via the EKWC, and its accumulation up to a critical level characterized by the separation of the boundary flow from the coast. It is found that the sharp southeastern corner of the Korean peninsula provides a favorable condition for the accumulation of relative vorticity. The separation of the EKWC usually accompanies the generation of a warm eddy with a diameter of about 120 km. The warm eddy has a typical layer-averaged velocity of 0.3 m/s and its lifespan is up to a year. In general, the characteristics of the simulated warm eddy are compatible with observations. A conclusion is therefore drawn that the variability of the EKWC is at least partially self-excited, not being influenced by any sources of perturbation in the forcing field, and that the likely source of the variability is the barotropic instability although the extent of contribution from the baroclinic instability remains unknown. The effects of the seasonal wind curl and inflow-outflow strength are also investigated.

  • PDF